We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
464
2
avatar+105 

Bekah has four brass house number digits: 2, 3, 5 and 7, and only has one of each number. How many distinct numbers can she form using one or more of the digits?

 Nov 5, 2018
 #1
avatar+101870 
+2

Using one digit, we have 4 possible numbers

 

Using two of the digits, we have  P (4,2)  = 12 possible numbers

 

Using therr of the digits, we have P(4,3)  = 24 possible numbers

 

Using all four, we have 4!  = 24 possible numbers

 

So....the total number of possibilities is

 

4 + 12 + 24 + 24   =

 

64 possibilities

 

 

 

cool cool cool

 Nov 5, 2018
 #2
avatar+22556 
+10

Bekah has four brass house number digits:
2, 3, 5 and 7, and only has one of each number.
How many distinct numbers can she form using one or more of the digits?

 

\(\text{binary code} \\ \begin{array}{|c|c|c|c|r|c|} \hline 2 & 3 & 5 & 7 & & \text{distinct numbers} \\ \hline 0&0&0&1 & 7 & 1! \\ 0&0&1&0 & 5 & 1! \\ 0&0&1&1 & 57 \text{ or } 75 & 2! \\ 0&1&0&0 & 3 & 1! \\ 0&1&0&1 & 37 \text{ or } 73 & 2! \\ 0&1&1&0 & 35 \text{ or } 53 & 2! \\ 0&1&1&1 & 357 & 3! \\ 1&0&0&0 & 2 & 1! \\ 1&0&0&1 & 27 \text{ or } 72 & 2! \\ 1&0&1&0 & 25 \text{ or } 52 & 2! \\ 1&0&1&1 & 257 & 3! \\ 1&1&0&0 & 23 \text{ or } 32 & 2! \\ 1&1&0&1 & 237 & 3! \\ 1&1&1&0 & 235 & 3! \\ 1&1&1&1 & 2357 & 4! \\ \hline &&&&\text{sum}& = 4\times 1! + 6\times 2! + 4\times 3!+1\times 4! \\ &&&&& = \dbinom{4}{1}1! +\dbinom{4}{2}2! +\dbinom{4}{3}3! +\dbinom{4}{4}4! \\ &&&&& = 1!C_4^1 +2!C_4^2 + 3!C_4^3 + 4!C_4^4 \\ &&&&& = 4+12+24+24 \\ &&&&&\mathbf{ = 64} \\ \hline \end{array}\)

 

laugh

 Nov 6, 2018
edited by heureka  Nov 8, 2018

8 Online Users

avatar
avatar