We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
297
1
avatar+147 

If y<0, find the range of all possible values of y such that \(\lceil{y}\rceil\cdot\lfloor{y}\rfloor=110\). Express your answer using interval notation.

 

 

I got (10,11), but it’s wrong.

 Jun 28, 2018
edited by DanielCai  Jun 28, 2018
edited by DanielCai  Jun 28, 2018

Best Answer 

 #1
avatar+8394 
+2

Any value of  y  in the interval  (10, 11)  will make the equation true, for example....

 

\(\lceil{10.1}\rceil\cdot\lfloor{10.1}\rfloor\,=\,11\cdot10\,=\,110 \)

 

But also, any value of  y  in the interval  (-11, -10)  will make the equation true, for example...

 

\( \lceil{-10.9}\rceil\cdot\lfloor{-10.9}\rfloor\,=\,-10\cdot-11\,=\,110\)

 

Since the problem says  y < 0 ,  the only values of  y  that work are those in the interval  (-11, -10) .

 Jun 28, 2018
 #1
avatar+8394 
+2
Best Answer

Any value of  y  in the interval  (10, 11)  will make the equation true, for example....

 

\(\lceil{10.1}\rceil\cdot\lfloor{10.1}\rfloor\,=\,11\cdot10\,=\,110 \)

 

But also, any value of  y  in the interval  (-11, -10)  will make the equation true, for example...

 

\( \lceil{-10.9}\rceil\cdot\lfloor{-10.9}\rfloor\,=\,-10\cdot-11\,=\,110\)

 

Since the problem says  y < 0 ,  the only values of  y  that work are those in the interval  (-11, -10) .

hectictar Jun 28, 2018

14 Online Users

avatar
avatar