+0  
 
0
1060
2
avatar+379 

deleted.

 Jun 11, 2019
edited by sinclairdragon428  Nov 20, 2019

Best Answer 

 #1
avatar+9479 
+3

The ratio of their side lengths is...

 

\(\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}\)

 

Now it is in the simplified form  \(\frac{a\sqrt{b}}{c}\)  where  a,  b,  and  c  are integers.

 

a + b + c  =  2 + 15 + 5  =  22

 Jun 11, 2019
 #1
avatar+9479 
+3
Best Answer

The ratio of their side lengths is...

 

\(\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}\)

 

Now it is in the simplified form  \(\frac{a\sqrt{b}}{c}\)  where  a,  b,  and  c  are integers.

 

a + b + c  =  2 + 15 + 5  =  22

hectictar Jun 11, 2019
 #2
avatar+379 
0

Thanks!

sinclairdragon428  Jun 11, 2019

4 Online Users

avatar