We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
87
2
avatar+253 

The ratio of the areas of two squares is 192/80. After rationalizing the denominator, the ratio of their side lengths can be expressed in the simplified form $\frac{a\sqrt{b}}{c}$ where a, b, and c are integers. What is the value of the sum a+b+c?

 Jun 11, 2019

Best Answer 

 #1
avatar+8724 
+3

The ratio of their side lengths is...

 

\(\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}\)

 

Now it is in the simplified form  \(\frac{a\sqrt{b}}{c}\)  where  a,  b,  and  c  are integers.

 

a + b + c  =  2 + 15 + 5  =  22

 Jun 11, 2019
 #1
avatar+8724 
+3
Best Answer

The ratio of their side lengths is...

 

\(\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}\)

 

Now it is in the simplified form  \(\frac{a\sqrt{b}}{c}\)  where  a,  b,  and  c  are integers.

 

a + b + c  =  2 + 15 + 5  =  22

hectictar Jun 11, 2019
 #2
avatar+253 
+1

Thanks!

sinclairdragon428  Jun 11, 2019

18 Online Users

avatar
avatar