+0

0
305
2

deleted.

Jun 11, 2019
edited by sinclairdragon428  Nov 20, 2019

#1
+3

The ratio of their side lengths is...

$$\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}$$

Now it is in the simplified form  $$\frac{a\sqrt{b}}{c}$$  where  a,  b,  and  c  are integers.

a + b + c  =  2 + 15 + 5  =  22

Jun 11, 2019

#1
+3

The ratio of their side lengths is...

$$\sqrt{\frac{192}{80}}\ =\ \sqrt{\frac{12}{5}}\ =\ \frac{\sqrt{12}}{\sqrt5}\ =\ \frac{\sqrt{12}\,\cdot\,\sqrt5}{\sqrt5\,\cdot\,\sqrt5}\ =\ \frac{\sqrt{12\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2\,\cdot\,3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{\sqrt{2\,\cdot\,2}\,\cdot\,\sqrt{3\,\cdot\,5}}{\sqrt{5\,\cdot\,5}}\ =\ \frac{2\sqrt{15}}{5}$$

Now it is in the simplified form  $$\frac{a\sqrt{b}}{c}$$  where  a,  b,  and  c  are integers.

a + b + c  =  2 + 15 + 5  =  22

hectictar Jun 11, 2019
#2
0

Thanks!

sinclairdragon428  Jun 11, 2019