+0  
 
+2
154
1
avatar

\(Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.\)
 

Guest Feb 16, 2018

Best Answer 

 #1
avatar+93866 
+3

Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.

 

\(\text{Let }\alpha\;\; and \;\ \beta\;\; \text{be the solutions of the quadratic equation }\\ 2x^2 - 8x + 7 = 0. \;\;\;Find \;\;\ \frac{1}{2a} + \frac{1}{2b}\\ \frac{1}{2\alpha} + \frac{1}{2\beta}=\frac{\beta + \alpha}{2\alpha\beta} \)

 

Now you can do this the long way and work out what the roots are but I expect you are supposed to know this:

 

\(\boxed{If \;\;ax^2+bx+c=0 \text{ and the roots are }\alpha \;\;and \;\; \beta\;\;then\\ \alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\}~\\ \)

 

So for your question

\(\alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\ \alpha + \beta = \frac{8}{2}\;\;and \;\; \alpha \beta = \frac{7}{2}\\\)

 

\(\frac{1}{2\alpha} + \frac{1}{2\beta}\\=\frac{\beta + \alpha}{2\alpha\beta}\\ =\frac{8}{2}\div\frac{2\times7}{2}\\ =4\div7\\ =\frac{4}{7}\)

Melody  Feb 16, 2018
 #1
avatar+93866 
+3
Best Answer

Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.

 

\(\text{Let }\alpha\;\; and \;\ \beta\;\; \text{be the solutions of the quadratic equation }\\ 2x^2 - 8x + 7 = 0. \;\;\;Find \;\;\ \frac{1}{2a} + \frac{1}{2b}\\ \frac{1}{2\alpha} + \frac{1}{2\beta}=\frac{\beta + \alpha}{2\alpha\beta} \)

 

Now you can do this the long way and work out what the roots are but I expect you are supposed to know this:

 

\(\boxed{If \;\;ax^2+bx+c=0 \text{ and the roots are }\alpha \;\;and \;\; \beta\;\;then\\ \alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\}~\\ \)

 

So for your question

\(\alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\ \alpha + \beta = \frac{8}{2}\;\;and \;\; \alpha \beta = \frac{7}{2}\\\)

 

\(\frac{1}{2\alpha} + \frac{1}{2\beta}\\=\frac{\beta + \alpha}{2\alpha\beta}\\ =\frac{8}{2}\div\frac{2\times7}{2}\\ =4\div7\\ =\frac{4}{7}\)

Melody  Feb 16, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.