+0  
 
+2
75
1
avatar

\(Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.\)
 

Guest Feb 16, 2018

Best Answer 

 #1
avatar+92458 
+3

Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.

 

\(\text{Let }\alpha\;\; and \;\ \beta\;\; \text{be the solutions of the quadratic equation }\\ 2x^2 - 8x + 7 = 0. \;\;\;Find \;\;\ \frac{1}{2a} + \frac{1}{2b}\\ \frac{1}{2\alpha} + \frac{1}{2\beta}=\frac{\beta + \alpha}{2\alpha\beta} \)

 

Now you can do this the long way and work out what the roots are but I expect you are supposed to know this:

 

\(\boxed{If \;\;ax^2+bx+c=0 \text{ and the roots are }\alpha \;\;and \;\; \beta\;\;then\\ \alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\}~\\ \)

 

So for your question

\(\alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\ \alpha + \beta = \frac{8}{2}\;\;and \;\; \alpha \beta = \frac{7}{2}\\\)

 

\(\frac{1}{2\alpha} + \frac{1}{2\beta}\\=\frac{\beta + \alpha}{2\alpha\beta}\\ =\frac{8}{2}\div\frac{2\times7}{2}\\ =4\div7\\ =\frac{4}{7}\)

Melody  Feb 16, 2018
Sort: 

1+0 Answers

 #1
avatar+92458 
+3
Best Answer

Let a and b be the solutions of the quadratic equation 2x^2 - 8x + 7 = 0. Find \frac{1}{2a} + \frac{1}{2b}.

 

\(\text{Let }\alpha\;\; and \;\ \beta\;\; \text{be the solutions of the quadratic equation }\\ 2x^2 - 8x + 7 = 0. \;\;\;Find \;\;\ \frac{1}{2a} + \frac{1}{2b}\\ \frac{1}{2\alpha} + \frac{1}{2\beta}=\frac{\beta + \alpha}{2\alpha\beta} \)

 

Now you can do this the long way and work out what the roots are but I expect you are supposed to know this:

 

\(\boxed{If \;\;ax^2+bx+c=0 \text{ and the roots are }\alpha \;\;and \;\; \beta\;\;then\\ \alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\}~\\ \)

 

So for your question

\(\alpha + \beta = \frac{-b}{a}\;\;and \;\; \alpha \beta = \frac{c}{a}\\ \alpha + \beta = \frac{8}{2}\;\;and \;\; \alpha \beta = \frac{7}{2}\\\)

 

\(\frac{1}{2\alpha} + \frac{1}{2\beta}\\=\frac{\beta + \alpha}{2\alpha\beta}\\ =\frac{8}{2}\div\frac{2\times7}{2}\\ =4\div7\\ =\frac{4}{7}\)

Melody  Feb 16, 2018

29 Online Users

avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy