Alli rolls a standard 6-sided die twice. What is the probability of rolling integers that differ by 2 on her first two rolls? Express your answer as a common fraction.
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5)>>Total = 36
The probability is: 8 / 36 ==4 / 9
Alli rolls a standard 6-sided die twice. What is the probability of rolling integers that differ by 2 on her first two rolls? Express your answer as a common fraction.
Here are all the pairs of rolls that Alli could roll, 36 of them.
The highlighted pairs are the ones that satisfy the condition.
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
Out of a possible 36 pairs, 8 satisfy the required condition. 8/36 reduces to 2/9
.