Given that $x$, $\frac{1}{x}$, $y$, $\frac{1}{y}$, $z$ and $\frac{1}{z}$ are all integers, how many distinct values of $x+ y+ z$ are possible?
The possible values of x + y + z are -3, -2 -1, 0, 1, 2, 3, so there are 7 possible values of x + y + z.