Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
500
2
avatar

For how many positive integers n less than 100 is 5^n + 8^(n + 1) + 13^(n + 2) + 14^(n + 3) a multiple of 6?

 Jun 23, 2021
 #1
avatar+287 
+2

If you make a table of congruences modulo 6 of

5^n, 8^{n+1}, 13^{n+2}, 14^{n+3)

for $n \equiv 0,1,2,3,4,5\pmod6$, you'll see a pattern.  According to my table, half of 5^n + 8^{n+1} + 13^{n+2} + 14^{n+3) for $1\le n< 100$ are $\equiv 0\pmod6$ and the other half are $\equiv 2\pmod6$.

 

For conveniece, when creating the table, replace every base $a$ by $a \bmod 6$.
 

 Jun 24, 2021
 #2
avatar+118703 
+1

 

For how many positive integers n less than 100 is a multiple of 6?

 

Lets simplify the expression (mod6)

5nmod6(1)nmod6

which is -1 when n is odd and +1 when n is even

 

13(n+2)1(n+2)1mod6

 

 

8(n+1)2(n+1)22nmod6 14(n+3)2(n+3)82n22nmod6 8(n+1)+14(n+3)=42nmod6 

so

5n+8(n+1)+13(n+2)+14(n+3)mod61+(1)n+42nmod6 When n is odd42nmod6 When n is even2+42nmod6 

consider 4*2^n

n 1 3 5 7   2 4 6 6
4*2^n 8 32 128 512   16 64 256 1024
4*2^n mod6 2 2 2 2   4 4 4 4
2+4*2^n mod6 (even only)           0 0 0 0

 

So that expression is a multiple of 6 for all even values of n.  So that is 49 values,  2 to 98 inclusive

 Jun 24, 2021

2 Online Users

avatar