+0

# help pls

0
238
2

For how many positive integers n less than 100 is 5^n + 8^(n + 1) + 13^(n + 2) + 14^(n + 3) a multiple of 6?

Jun 23, 2021

#1
+2

If you make a table of congruences modulo 6 of

$$5^n, 8^{n+1}, 13^{n+2}, 14^{n+3)$$

for $n \equiv 0,1,2,3,4,5\pmod6$, you'll see a pattern.  According to my table, half of $$5^n + 8^{n+1} + 13^{n+2} + 14^{n+3)$$ for $1\le n< 100$ are $\equiv 0\pmod6$ and the other half are $\equiv 2\pmod6$.

For conveniece, when creating the table, replace every base $a$ by $a \bmod 6$.

Jun 24, 2021
#2
+1

For how many positive integers n less than 100 is a multiple of 6?

Lets simplify the expression (mod6)

$$5^n\mod6\\ \equiv(-1)^n\mod6\\$$

which is -1 when n is odd and +1 when n is even

$$13^{(n+2)}\equiv 1^{(n+2)}\equiv1\mod6$$

$$8^{(n+1)}\equiv 2^{(n+1)}\equiv2*2^n\mod6\\~\\ 14^{(n+3)}\equiv 2^{(n+3)}\equiv8*2^n\equiv2*2^n\mod6\\~\\ 8^{(n+1)}+14^{(n+3)}=4*2^n\mod6\\~\\$$

so

$$5^n + 8^{(n + 1)} + 13^{(n + 2)} + 14^{(n + 3)}\mod6 \\ \equiv 1+ (-1)^n+4*2^n \mod6\\~\\ \text{When n is odd}\equiv 4*2^n \mod6\\~\\ \text{When n is even}\equiv 2+4*2^n \mod6\\~\\$$

consider 4*2^n

 n 1 3 5 7 2 4 6 6 4*2^n 8 32 128 512 16 64 256 1024 4*2^n mod6 2 2 2 2 4 4 4 4 2+4*2^n mod6 (even only) 0 0 0 0

So that expression is a multiple of 6 for all even values of n.  So that is 49 values,  2 to 98 inclusive

Jun 24, 2021