Give that \(ABCD\) is a square, \(AM=13\), \(MN=14\), \(NC=21\). Find the length of \(AB\).
MQ / 13 = (14 - MQ) / 21 MQ = 91/17 NQ = 14 - MQ
AQ = sqrt(MQ2 + 132) AQ = 14.05894659
CQ = sqrt(NQ2 + 212) CQ = 22.71060603
AC = AQ + CQ AC = 36.76955262
AB = sqrt(AC2 / 2) AB = 26 units