We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
85
1
avatar

Find the sixteenth term of a fibonacci sequence whose first 2 terms are -3 and 9

 Mar 11, 2019
 #1
avatar+102409 
0

Let the first term = a1  and the second term = a2

Note that the 3rd term is  =  a1 + a2

And the 4th term is =    a1 + 2a2

And the 5th term is =  2a1 + 3a2 

 

So....the normal  Fibonacci Series is

 

Fib (n)            1     2     3     4    5       

Term               1     1     2    3    5        etc

 

Then...in the above series....it appears that the nth term (after the second one ) is given by :

 

Fib (n -2 )*a1 + Fib (n - 1)*a2

 

So....the 16th term is

 

Fib (16 - 2) * a1  + Fib (16 - 1) * a2  =

 

FIb (14) *( -3)   +  Fib (15) * 9

 

Note..... Fib (11) = 89       Fib (12) = 144    Fib (13) = 233   Fib (14) = 377    Fib(15) = 610

 

So....the 16th term is

 

(377)* (-3)  +  610 * 9  =

 

4359

 

 

cool cool cool

 Mar 11, 2019

9 Online Users

avatar