We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
61
2
avatar+208 

The solutions to the equation\(6x^2 + 10x = 4 - 10x - 6x^2 \ can\ be\ written\ in\ the form\\ x=\frac{P\pm \sqrt Q}{R}, where\ P\ and\ R\\ are\ relatively\ prime\ integers\\ and\ R>0. \ What \ is \ the\ product\ PQR ?\)

 

 Jun 17, 2019
 #1
avatar+22546 
+5

The solutions to the equation

\(6x^2 + 10x = 4 - 10x - 6x^2 \text{ can be written in the form }\\ x=\frac{P\pm \sqrt Q}{R}, \text{ where P and R}\\ \text{are relatively prime integers and } R>0. \\ \text{What is the product PQR} ? \)

 

\(\begin{array}{|rcll|} \hline 6x^2 + 10x &=& 4 - 10x - 6x^2 \\ 12x^2 +20x -4 &=& 0 \\\\ x &=& \dfrac{-20\pm\sqrt{20^2-4\cdot 12\cdot(-4) } } {2\cdot 12} \\ x &=& \dfrac{-20\pm\sqrt{400+4\cdot 48 } } {2\cdot 12} \\ x &=& \dfrac{-20\pm\sqrt{4\cdot 100 +4\cdot 48 } } {2\cdot 12} \\ x &=& \dfrac{-20\pm\sqrt{4}\sqrt{100+48 } } {2\cdot 12} \\ x &=& \dfrac{-20\pm2\sqrt{148 } } {2\cdot 12} \\ x &=& \dfrac{-20\pm2\sqrt{4\cdot 37 } } {4\cdot 6} \\ x &=& \dfrac{-20\pm2\sqrt{4}\sqrt{ 37 } } {4\cdot 6} \\ x &=& \dfrac{-20\pm 4\sqrt{ 37 } } {4\cdot 6} \\ x &=& \dfrac{-4\cdot 5\pm 4\sqrt{37 } } {4\cdot 6} \\ x &=& \dfrac{ 4\cdot (-5\pm \sqrt{37}) } {4\cdot 6} \\ \mathbf{x} &=& \mathbf{\dfrac{ -5\pm \sqrt{37} } {6} } \quad | \quad P=-5,\ Q=37,\ R = 6 \\\\ PQR&=& -5\cdot 37 \cdot 6 \\ \mathbf{PQR} &=& \mathbf{-1110 } \\ \hline \end{array}\)

 

Thank you Alan!

Thank you CPhill!

 

laugh

 Jun 17, 2019
edited by heureka  Jun 17, 2019
edited by heureka  Jun 18, 2019
edited by heureka  Jun 18, 2019
 #2
avatar+208 
+2

Thank You heureka!

NoobGuest  Jun 18, 2019

8 Online Users

avatar