The solutions to the equation6x2+10x=4−10x−6x2 can be written in theformx=P±√QR,where P and Rare relatively prime integersand R>0. What is the product PQR?
The solutions to the equation
6x2+10x=4−10x−6x2 can be written in the form x=P±√QR, where P and Rare relatively prime integers and R>0.What is the product PQR?
6x2+10x=4−10x−6x212x2+20x−4=0x=−20±√202−4⋅12⋅(−4)2⋅12x=−20±√400+4⋅482⋅12x=−20±√4⋅100+4⋅482⋅12x=−20±√4√100+482⋅12x=−20±2√1482⋅12x=−20±2√4⋅374⋅6x=−20±2√4√374⋅6x=−20±4√374⋅6x=−4⋅5±4√374⋅6x=4⋅(−5±√37)4⋅6x=−5±√376|P=−5, Q=37, R=6PQR=−5⋅37⋅6PQR=−1110
Thank you Alan!
Thank you CPhill!