We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
127
1
avatar

What is the value of \(c\) if x * (3x + 1) < c if and only when  \(x\in \left(-\frac{7}{3},2\right)\)?

 Jul 25, 2019
edited by Guest  Jul 25, 2019
edited by Guest  Jul 25, 2019

Best Answer 

 #1
avatar+8778 
+5

Let     f(x)  =  x * (3x + 1)  =  3x2 + x

 

Let's see what  f(x)   is  when  x  is at the endpoints of the interval.

 

f(-7/3)  =  3(-7/3)2 + (-7/3)  =  14

 

f(2)  =  3(2)2 + 2  =  14

 

Aha! they are the same, just as I suspected! 🕵️‍♀️

 

Let's see what  f(x)  is when  x  is in the interval.

 

f(0)  =  3(0)2 + 0  =  0

 

And it is true that  0 < 14

 

Since  f(x)  is a parabola, we can be sure that  f(x) < 14  if and only if  x  is in the interval  (-7/3, 2)

 

Here's a graph: https://www.desmos.com/calculator/bcaogdbdtx

 Jul 25, 2019
 #1
avatar+8778 
+5
Best Answer

Let     f(x)  =  x * (3x + 1)  =  3x2 + x

 

Let's see what  f(x)   is  when  x  is at the endpoints of the interval.

 

f(-7/3)  =  3(-7/3)2 + (-7/3)  =  14

 

f(2)  =  3(2)2 + 2  =  14

 

Aha! they are the same, just as I suspected! 🕵️‍♀️

 

Let's see what  f(x)  is when  x  is in the interval.

 

f(0)  =  3(0)2 + 0  =  0

 

And it is true that  0 < 14

 

Since  f(x)  is a parabola, we can be sure that  f(x) < 14  if and only if  x  is in the interval  (-7/3, 2)

 

Here's a graph: https://www.desmos.com/calculator/bcaogdbdtx

hectictar Jul 25, 2019

25 Online Users

avatar
avatar
avatar
avatar