We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
149
4
avatar

if f(x)=ax^6-bx^4+x-1 and f(2)=5 what is f(-2)?

 Mar 10, 2019
 #1
avatar+6046 
0

\(f(x) = a x^6 - b x^4 + x - 1\\ \text{little trick here}\\ f_e(x) = a x^6 - b x^4 - 1 \text{ (this is the even part of }f(x))\\ f_e(x) = f_e(-x)\)

 

\(f(x) = x + f_e(x)\\ f(2) = 2 + f_e(2) = 5\\ f_e(2) = 3\\ f(-2) = -2 + f_e(-2) = \\ -2 + f_e(2) = \\ -2 + 3 = 1\)

.
 Mar 10, 2019
edited by Rom  Mar 11, 2019
edited by Rom  Mar 11, 2019
 #2
avatar
0

That wasn't quite correct...

Guest Mar 11, 2019
 #3
avatar+6046 
+1

fixed

Rom  Mar 11, 2019
 #4
avatar
+1

\(\text{if }f(x)=ax^6-bx^4+x-1\text{ and }f(2)=5\text{ what is }f(-2)?\)

 

The answer is actually 1.

 

\(\begin{align*} f(2)&=a(2^6)-b(2^4)+2-1 \\ 5&=a(64)-b(16)+1 \\ 4&=a(64)-b(16) \\ \end{align*}\)

Then,

\(\begin{align*} f(-2)&=a((-2)^6)-b((-2)^4)-2-1 \\ f(-2)&=a(64)-b(16)-3~~~(\leftarrow\text{We found what }64a-16b\text{ was in the previous equation.)} \\ f(-2)&=4-3 \\ f(-2)&=1 \end{align*}\)

Guest Mar 11, 2019

28 Online Users

avatar