+0

# help plz

0
116
1

In the diagram below, B, C, and D are all on the same line, angle BAC =24 degrees and AB = AC = CD

If angle ADC = x degrees, what is the value of x?

Guest Nov 28, 2017
edited by Guest  Nov 28, 2017

### Best Answer

#1
+6588
+2

The sum of the angles in every triangle  =  180°  , so

∠ABC + ∠ACB + 24°  =  180°

AB = AC , so triangle  ABC is isoscelese and ∠ABC = ∠ACB .

∠ACB + ∠ACB + 24°  =  180°   Subtract  24  from both sides.

∠ACB + ∠ACB  =  156°            Combine like terms.

2∠ACB  =  156°                        Divide both sides of the equation by  2 .

∠ACB  =  78°

Since  B, C, and D  are on the same line...

∠ACB + ∠ACD  =  180°

78° + ∠ACD  =  180°

∠ACD  =  102°

And triangle ACD is also isoscelese with  ∠CAD = ∠ADC = x   So...

x + x + 102°  =  180°

2x  =  78°

x  =  39°

hectictar  Nov 28, 2017
Sort:

### 1+0 Answers

#1
+6588
+2
Best Answer

The sum of the angles in every triangle  =  180°  , so

∠ABC + ∠ACB + 24°  =  180°

AB = AC , so triangle  ABC is isoscelese and ∠ABC = ∠ACB .

∠ACB + ∠ACB + 24°  =  180°   Subtract  24  from both sides.

∠ACB + ∠ACB  =  156°            Combine like terms.

2∠ACB  =  156°                        Divide both sides of the equation by  2 .

∠ACB  =  78°

Since  B, C, and D  are on the same line...

∠ACB + ∠ACD  =  180°

78° + ∠ACD  =  180°

∠ACD  =  102°

And triangle ACD is also isoscelese with  ∠CAD = ∠ADC = x   So...

x + x + 102°  =  180°

2x  =  78°

x  =  39°

hectictar  Nov 28, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details