Simplify:
\(\dfrac{\sqrt{338}}{\sqrt{288}}+\dfrac{\sqrt{150}}{\sqrt{96}}\)
Express your answer as a common fraction.
√338 √ 150
____ + _____ =
√288 √96
13√2 5√6
____ + ____ =
12√2 4√6
13 5
__ + __ =
12 4
13 15
__ + ___ =
12 12
28
__ =
12
7
__
3
Hi Guest,
First,
\(\frac{\sqrt{338}}{\sqrt{288}}+\frac{\sqrt{150}}{\sqrt{96}} = \frac{13}{2^2\cdot \:3}+\frac{\sqrt{150}}{\sqrt{96}}\)
Next, \(\frac{13}{2^2\cdot \:3}+\frac{\sqrt{150}}{\sqrt{96}} = \frac{13}{2^2\cdot \:3}+\frac{5}{2^2}\)
Simplifying again, \(\frac{13}{2^2\cdot \:3}+\frac{5}{2^2} = \frac{13}{12}+\frac{5}{2^2}\)
Lastly, \(\frac{13}{12}+\frac{5}{2^2} = \frac{13}{12} + \frac{5}{4} = \frac{13}{12}+\frac{15}{12} = \frac{28}{12} = \frac{7}{3}\)
Your welcome :P, Evan