Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
224
4
avatar+27 

What is the smallest distance between the origin and a point on the graph of y=12(x28)?

 Nov 6, 2022
 #2
avatar+118703 
+1

What is the smallest distance between the origin and a point on the graph below.

I can see that the graph is a concave up parabola'

So I know a smallest distance exists, there will be no maximum distance.

 

y=12(x28)(x,12(x28)) is a general point on this graphI need the distance of this point from (0,0)d2=x2+[12(x28)]2d2=x2+12(x28)2

 

d will be minimum when d^2 is minimum.  So to avoid confusion I will let  v=d^2

v=x2+12(x28)2

dvdx=2x+(x28)2xdvdx=2x(1+x28)dvdx=2x(x27)dvdx=0whenx=0orx=±7

When x=0   v=32

When x= +/-sqrt7   v=7+0.5=7.5 

Clearly the min is when v=7.5

So the minimum distance is  7.5

 

 

LaTex

y=\dfrac{1}{\sqrt{2}}\left(x^2-8\right)\\
\left ( x,\dfrac{1}{\sqrt{2}}\left(x^2-8\right)\right) \text{   is a general point on this graph}\\
\text{I need the distance of this point from (0,0)}\\
d^2=x^2+[\frac{1}{\sqrt{2}}\left(x^2-8\right)]^2\\
d^2=x^2+\frac{1}{2}\left(x^2-8\right)^2\\

 

v=x^2+\frac{1}{2}\left(x^2-8\right)^2\\

 Nov 7, 2022
 #3
avatar+118703 
+1

Checking.

 

The points on the graph  are

   x=±7y=12(78)=12=22(7,22)and(7,22)distance from (0,0)d=7+2/4=7.5

 

Melody  Nov 7, 2022
 #4
avatar+27 
+1

thank you very much

 Nov 7, 2022

3 Online Users

avatar