The following polar grid is centered at the origin, with concentric circles of positive integer radii starting at $1,$ and consecutive rays through the origin with angles of $\pi/12$ between them:


[asy] size(200); pair A = (0,0); for (int i = 1; i < 6; ++i) { draw(Circle((0,0),i), linewidth(0.4)); } for(int i=0;i<360;i+=15) { draw(rotate(i)*((-5.0,0)--(5.0,0)), linewidth(0.4)); } pair A, B,C, D, EE, F; A = (1,-sqrt(3)); B = (1, sqrt(3)); C = (sqrt(3), 1); D = (4,0); EE = (0,0); F = (-sqrt(2), -sqrt(2)); dot(A, red+linewidth(3.5)); dot(B, red+linewidth(3.5)); dot(C, red+linewidth(3.5)); dot(D, red+linewidth(3.5)); dot(EE, red+linewidth(3.5)); dot(F, red+linewidth(3.5)); label("$A$", A, S); label("$B$", B, N); label("$C$", C, E); label("$D$", D, S); label("$E$", EE, 3*S); label("$F$", F, S); [/asy]


Some of the points above are on the graph

\[r=4 \cos(\theta).\]

Answer with the list in any order, separated by commas.

 Jul 30, 2021

The points on the curve are A, B, D, F.

 Sep 12, 2021

26 Online Users