Find the ordered quintuplet (a,b,c,d,e) that satisfies the system of equations
a + 2b + 3c + 4d + 5e = 41
2a + 3b + 4c + 5d + e = 15
3a + 4b + 5c + 1d + 2e = 34
4a + 5b + 1c + 2d + 3e = 68
5a + 1b + 2c + 3d + 4e = 57
(a,b,c,d,e) = (2,-4,6,1,5)
Add equations together to get 15(a+b+c+d+e)=215.
Divide to get a+b+c+d+e=43/3.
Now take equation 1, subtract it from equation 2.
a+b+c+d-4e=-26. Subtract the two equations shown to get 5e=121/3, so e=121/15.
See if you can use this same method to determine a, b, c, and d.