Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
746
2
avatar+31 

How many pairs of positive integers (a,b) satisfy {1}/{a} + {1}/{b}={2}/{17}?

 May 22, 2019
 #1
avatar+130466 
+3

1/a + 1/b  =  2/17

 

One obvious solution is    a  = 17    and b = 17

 

Another can be found using the "Egyptian Fraction" method

 

(1) Take the ceiling of  [ 17/2]  = ceiling [ 8.5]  =   9

(2)  Take the reciprocal of this   =  1/9

(3)  Subtract this fraction from 2/17

 

2/17  - 1/9   =

 

18/153 -  17/153  =  1/153

 

So....two other possibilities  are  either

 

1/9 + 1/153    or    1/153  + 1/9

 

So....the possible positive pairs of (a, b)  =

 

(17,17)

(9, 153)  and

(153, 9 )

 

cool cool cool

 May 22, 2019
edited by CPhill  May 22, 2019
edited by CPhill  May 22, 2019
 #2
avatar+26396 
+2

How many pairs of positive integers (a,b) satisfy 1a+1b=217 ?

 

For odd n>2 there is always at least one decomposition into exactly two unit fractions: 2n=1a+1b 

Finding all possibilities.

The prime factorization of n2 results in all possible decompositions into two unit fractions.

 

n=17 is oddn2=1717=1721All divisors of n2=289 are: 1, 17, 172=289Let n2=p×q 

 

pqn2strkab=pq=p+q2=pq2=t2=15+152+t22=kr=k+r1.1721289=289114514472819153217=19+11532.1172289=128914514472811539217=1153+193.1717289=17171700171717217=117+117

 

laugh

 May 22, 2019
edited by heureka  May 22, 2019

0 Online Users