We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
73
1
avatar

Circle O is tangent to AB at A, and angle ABD = 90 degrees. If AB = 12 and CD = 18, find the radius of the circle.

https://latex.artofproblemsolving.com/f/f/1/ff13ec3e917b2a46649871ef2354fc1290478bc0.png

 Mar 23, 2019
 #1
avatar+30 
0

ok, no need to say it's due tmrw, cuz this is an aops thing

 

the solution:

 

Let's say that the radius is equal to r. Let's say the midpoint of CD is P. Then, we know that PC= 9. Draw OP, and notice that OP is perpendicular to CD. Also, since \(\angle ABD \) = 90, that means that AOPB is a rectangle, which implies AB=OP= 12. Using the pythagorean theorem, the radius is equal to \(\sqrt{9^2 + 12^2}, \text{which is equal to } \boxed{15}\). Just use pi r ^2 to find the area, which is 225 pi

.
 Mar 23, 2019
edited by imheretosavetheday  Mar 23, 2019

15 Online Users

avatar
avatar
avatar