+0  
 
0
230
1
avatar+73 

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  Express your answer in the form a+bi, where a and b are real.

amandapaolars  Mar 13, 2018
 #1
avatar+20009 
+2

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  

Express your answer in the form a+bi, where a and b are real.

 

\(\begin{array}{|rcll|} \hline && 1 + \dfrac{i}{2} - \dfrac{1}{4} - \dfrac{i}{8} +\dfrac{1}{16} + \dfrac{i}{32} - \dfrac{1}{64} - \dfrac{i}{128} + \cdots \\ &=& \underbrace{ 1 - \dfrac{1}{4} +\dfrac{1}{16} - \dfrac{1}{64} + \cdots}_{=\text{geom. sequence: } \\ a_1 = 1,\ r=-\dfrac{1}{4}} + \underbrace{ \dfrac{i}{2} - \dfrac{i}{8} + \dfrac{i}{32} - \dfrac{i}{128} + \cdots}_{=\text{geom. sequence: } \\ a_1 = \dfrac{i}{2},\ r=-\dfrac{1}{4}} \\ &=& 1\cdot \dfrac{1}{1-(-\dfrac{1}{4})} + \dfrac{i}{2} \cdot \dfrac{1}{1-(-\dfrac{1}{4})} \\ &=& 1\cdot \dfrac{4}{5} + \dfrac{i}{2} \cdot \dfrac{4}{5} \\ &=& \mathbf{\dfrac{4}{5} + \dfrac{2}{5} i} \\ \hline \end{array}\)

 

 

laugh

heureka  Mar 14, 2018
edited by heureka  Mar 14, 2018

18 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.