We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
550
1
avatar+73 

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  Express your answer in the form a+bi, where a and b are real.

 Mar 13, 2018
 #1
avatar+22558 
+2

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  

Express your answer in the form a+bi, where a and b are real.

 

\(\begin{array}{|rcll|} \hline && 1 + \dfrac{i}{2} - \dfrac{1}{4} - \dfrac{i}{8} +\dfrac{1}{16} + \dfrac{i}{32} - \dfrac{1}{64} - \dfrac{i}{128} + \cdots \\ &=& \underbrace{ 1 - \dfrac{1}{4} +\dfrac{1}{16} - \dfrac{1}{64} + \cdots}_{=\text{geom. sequence: } \\ a_1 = 1,\ r=-\dfrac{1}{4}} + \underbrace{ \dfrac{i}{2} - \dfrac{i}{8} + \dfrac{i}{32} - \dfrac{i}{128} + \cdots}_{=\text{geom. sequence: } \\ a_1 = \dfrac{i}{2},\ r=-\dfrac{1}{4}} \\ &=& 1\cdot \dfrac{1}{1-(-\dfrac{1}{4})} + \dfrac{i}{2} \cdot \dfrac{1}{1-(-\dfrac{1}{4})} \\ &=& 1\cdot \dfrac{4}{5} + \dfrac{i}{2} \cdot \dfrac{4}{5} \\ &=& \mathbf{\dfrac{4}{5} + \dfrac{2}{5} i} \\ \hline \end{array}\)

 

 

laugh

 Mar 14, 2018
edited by heureka  Mar 14, 2018

6 Online Users

avatar
avatar