+0  
 
0
101
1
avatar+73 

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  Express your answer in the form a+bi, where a and b are real.

amandapaolars  Mar 13, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
+2

Evaluate $1+\frac i2-\frac 14-\frac i8+\frac 1{16}+\frac i{32}-\cdots$ (where $i$ is the imaginary unit).  

Express your answer in the form a+bi, where a and b are real.

 

\(\begin{array}{|rcll|} \hline && 1 + \dfrac{i}{2} - \dfrac{1}{4} - \dfrac{i}{8} +\dfrac{1}{16} + \dfrac{i}{32} - \dfrac{1}{64} - \dfrac{i}{128} + \cdots \\ &=& \underbrace{ 1 - \dfrac{1}{4} +\dfrac{1}{16} - \dfrac{1}{64} + \cdots}_{=\text{geom. sequence: } \\ a_1 = 1,\ r=-\dfrac{1}{4}} + \underbrace{ \dfrac{i}{2} - \dfrac{i}{8} + \dfrac{i}{32} - \dfrac{i}{128} + \cdots}_{=\text{geom. sequence: } \\ a_1 = \dfrac{i}{2},\ r=-\dfrac{1}{4}} \\ &=& 1\cdot \dfrac{1}{1-(-\dfrac{1}{4})} + \dfrac{i}{2} \cdot \dfrac{1}{1-(-\dfrac{1}{4})} \\ &=& 1\cdot \dfrac{4}{5} + \dfrac{i}{2} \cdot \dfrac{4}{5} \\ &=& \mathbf{\dfrac{4}{5} + \dfrac{2}{5} i} \\ \hline \end{array}\)

 

 

laugh

heureka  Mar 14, 2018
edited by heureka  Mar 14, 2018

18 Online Users

avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy