Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
560
1
avatar+81 

What is the smallest distance between the origin and a point on the graph of  y=1/sqrt(2) - (x^2-3)?

 Jul 31, 2020
 #1
avatar+118702 
+3

y=12(x23)y=x2+3+12y=x2+6+22

 

This is a concave down parabola with y intercept     6+223.707

And the y axis is the axis of symmetry.

 

A general point on this parabola is    (x,[x2+6+22])

The distance square from (0,0) to the parabola for any given x value will be

 

d2=D=(x0)2+(x2+6+220)2D=x2+(x2+6+22)2D=x2+x4+(26+22)x2+(6+22)2D=x2+x4+(62)x2+(36+2+1224)D=x4+(162)x2+(192+32)D=x4+(52)x2+(192+32) D=4x3+2(52)xD will be minimum when D=00=4x3+2(52)xI know just from thinking about the graph that x00=4x2+2(52)0=4x210224x2=10+222x2=5+2x2=5+22x=±5+22

So the distance will be minimum when     x=±5+22

Sub to get y

 

y=[±5+22]2+6+22y=[5+22]+6+22y=522+6+22y=12

 

So the closest points on the parabola to (0,0)     are      (5+22,12)and(5+22,12)

 

So the distance from either both these points to the origin will be    

 

 

d=(5+22)+14d=(10+22+14)d=(11+224)smallestdistance=11+222smallestdistance1.86units

 

Here is the related graph:

 

 

 

LaTex:

y=\frac{1}{\sqrt2}-(x^2-3)\\
y=-x^2+3+\frac{1}{\sqrt2}\\
y=-x^2+\frac{6+\sqrt2}{2}\\

 

d^2=D=(x-0)^2+(-x^2+\frac{6+\sqrt2}{2}-0)^2\\
D=x^2+(-x^2+\frac{6+\sqrt2}{2})^2\\
D=x^2+x^4+(-2*\frac{6+\sqrt2}{2})x^2+(\frac{6+\sqrt2}{2})^2\\
D=x^2+x^4+(-6-\sqrt2)x^2+(\frac{36+2+12\sqrt2}{4})\\
D=x^4+(1-6-\sqrt2)x^2+(\frac{19}{2}+3\sqrt2)\\
D=x^4+(-5-\sqrt2)x^2+(\frac{19}{2}+3\sqrt2)\\~\\
D'=4x^3+2(-5-\sqrt2)x\\
\text{D will be minimum when }D'=0\\
0=4x^3+2(-5-\sqrt2)x\\
\text{I know just from thinking about the graph that  }\;x\ne0\\
0=4x^2+2(-5-\sqrt2)\\
0=4x^2-10-2\sqrt2\\
4x^2=10+2\sqrt2\\
2x^2=5+\sqrt2\\
x^2=\frac{5+\sqrt2}{2}\\
x=\pm\sqrt{\frac{5+\sqrt2}{2}}\\

 

y=-\left[\pm\sqrt{\frac{5+\sqrt2}{2}}\right]^2+\frac{6+\sqrt2}{2}\\
y=-\left[\frac{5+\sqrt2}{2}\right]+\frac{6+\sqrt2}{2}\\
y=\frac{-5-\sqrt2}{2}+\frac{6+\sqrt2}{2}\\
y=\frac{1}{2}

 

\left(\sqrt{\frac{5+\sqrt2}{2}},\frac{1}{2}\right)\quad and \quad \left(-\sqrt{\frac{5+\sqrt2}{2}},\frac{1}{2}\right)

 

d=\sqrt{          \left(\frac{5+\sqrt2}{2}\right)   + \frac{1}{4}       }\\
d=\sqrt{          \left(\frac{10+2\sqrt2+1}{4}\right) }\\
d=\sqrt{          \left(\frac{11+2\sqrt2}{4}\right) }\\
smallest\;\; distance=\frac{\sqrt{  11+2\sqrt2  }}{2}\\
smallest\;\; distance\approx 1.86\;units

 Jul 31, 2020
edited by Melody  Jul 31, 2020

0 Online Users