+0  
 
0
48
2
avatar+149 

In triangle ABC, B = 90 degrees. Semicircles are constructed on sides AB, AC, and BC, as shown below. Prove that the total area of the shaded region is equal to the area of triangle ABC.

 

 Sep 26, 2020
 #1
avatar
-1

To prove that the shaded area is equal to the area of a triangle (ABC), we have to find the area of the entire figure, and then subtract the area of the largest semicircle.

 

Let the sides of a triangle ABC be 3-4-5

 

Let denote the areas of 3 semicircles, starting with the smallest one:    A1, A2, and  A3

 

A1 = (1.52*pi) /2 = 3.534291735 u2

 

A2 = 2pi = 6.283185307 u2 

 

A3 = (2.52*pi) /2 = 9.817477043 u2

 

ΔA = (3*4) /2 = 6 u2

 

ΔA = ( A1 + A2 + ΔA ) - A3

 

6 = 6  

 Sep 26, 2020
 #2
avatar+149 
0

I'm sorry, that doesn't prove it.

 Sep 26, 2020

16 Online Users