+0

# Help This HW is way to hard, URGENT

+1
128
1

1)$$Compute \lfloor \log_3 1000 \rfloor.$$

2)Among the following functions, let a be the number of functions that are monotonically increasing, let b be the number of functions that are monotonically decreasing, and let c be the number of functions that are neither monotonically increasing nor monotonically decreasing. Enter your answer in the form "a,b,c".

\begin{align*} y &= x^4 \\ y &= \log_{\frac{1}{2}} x \\ y &= x^2 - 2x \\ y &= \frac{1}{x^2} \\ y &= -\frac{1}{\sqrt{x}} \\ y &= \sqrt{x + 4} \\ y &= 11^{-x} \\ y &= 5 - 3x \end{align*}

3)Among the following functions, let a be the number of functions that are even, let b be the number of functions that are odd, and let c be the number of functions that are neither even nor odd. Enter your answer in the form "a,b,c".

\begin{align*} y &= \frac{x}{x^2 - 1} \\ y &= \frac{x}{x - 1} \\ y &= 2x - 11 \\ y &= \log_3 (x^2 - 1) \\ y &= 2^{-x} \\ y &= 6x^5 + x + \frac{2}{x^3} \\ y &= \sqrt{x} \\ y &= \lfloor x \rfloor \end{align*}

May 12, 2019

#1
0