Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
610
3
avatar

i need the answer and solution preferably please. Thank you very much!

 Feb 22, 2019
 #2
avatar+26397 
+4

i need the answer and solution preferably please.

 

if  tan(120x)=sin(120)sin(x)cos(120)cos(x), where 0<x<180, compute x

 

Let s=sin(120)=sin(60)=32Let c=cos(120)=cos(60)=12

LHS:

tan(120x)=sin(120x)cos(120x)=sin(120)cos(x)cos(120)sin(x)cos(120)cos(x)+sin(120)sin(x)=scos(x)csin(x)ccos(x)+ssin(x)

 

RHS:

sin(120)sin(x)cos(120)cos(x)=2cos(120+x2)sin(120x2)2sin(120+x2)sin(120x2)=cos(120+x2)sin(120+x2)=cos(60+x2)sin(60+x2)=cos(60)cos(x2)sin(60)sin(x2)sin(60)cos(x2)+cos(60)sin(x2)=sin(60)sin(x2)cos(60)cos(x2)sin(60)cos(x2)+cos(60)sin(x2)=ssin(x2)+ccos(x2)scos(x2)csin(x2)

 

scos(x)csin(x)ccos(x)+ssin(x)=ssin(x2)+ccos(x2)scos(x2)csin(x2)(scos(x)csin(x))(scos(x2)csin(x2))=(ccos(x)+ssin(x))(ssin(x2)+ccos(x2))s2cos(x)cos(x2)sccos(x)sin(x2)scsin(x)cos(x2)+c2sin(x)sin(x2)=c2cos(x)cos(x2)+sccos(x)sin(x2)+scsin(x)cos(x2)+s2sin(x)sin(x2)cos(x)cos(x2)(s2c2)sin(x)sin(x2)(s2c2)2sccos(x)sin(x2)2scsin(x)cos(x2)=0(s2c2)(cos(x)cos(x2)sin(x)sin(x2)=cos(x+x2))2sc(cos(x)sin(x2)+sin(x)cos(x2)=sin(x+x2))=0(s2c2)cos(x+x2)2scsin(x+x2)=02scsin(x+x2)=(s2c2)cos(x+x2)2scsin(3x2)=(s2c2)cos(3x2)tan(3x2)=s2c22sc|s2c2=3414=12tan(3x2)=122sc|2sc=232(12)=32tan(3x2)=1232tan(3x2)=333x2=arctan(33)+n180nZx=23arctan(33)+23n180x=23(30)+n120x=20+n120n=1(0<x<180)x=20+120x=100

 

laugh

 Feb 22, 2019
 #3
avatar+130477 
+2

Very impressive, Heureka !!!!!

 

 

cool cool cool

CPhill  Feb 22, 2019

1 Online Users