Find one ordered pair $(x,y)$ of real numbers such that $x + y = 10$ and $x^3 + y^3 = 162 + x^2 + y^2.$
No real numbers make this true
See WolframAlpha's solution here : https://www.wolframalpha.com/input?i=x+%2B+y++%3D+10+%2C+x%5E3+%2B+y%5E3++%3D+x%5E2+%2B+y%5E2+%2B+162