+0  
 
0
1720
2
avatar+4 

"An airplane makes a 990 km flight with a tailwind and returns, flying into the same wind. The total flying time is 3 hours 20 minutes, and the airplane’s sped in still air is 600 km/h. What is the speed of the wind?"

 

 I have no idea on how to even approach this question! I know I have to use quadratics but this is nothing like any of the example questions on my online course! If anyone can help it would be much appreciated!

 Aug 4, 2016

Best Answer 

 #1
avatar+26388 
+15

An airplane makes a 990 km flight with a tailwind and returns,
flying into the same wind. The total flying time is 3 hours 20 minutes,
and the airplane’s speed in still air is 600 km/h. What is the speed of the wind?

 

velocity airplane:  \(v_a\)

velocity wind: \(v_w\)

 

time for the journey there: \(t_1\)

time for way back: \(t_2\)

 

distance: d = 990 km

total time: \(t = t_1 + t_2\)           

( t = 3 hours 20 minutes )


\(\begin{array}{|rcll|} \hline d &=& (v_a+v_w)\cdot t_1 \quad \text{ for the journey there} \\ d &=& (v_a-v_w)\cdot t_2 \quad \text{ for way back} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline t_1 &=& \dfrac{d}{v_a+v_w} \\ t_2 &=& \dfrac{d}{v_a-v_w} \\\\ t &=& t_1 + t_2 \\\\ t &=& \dfrac{d}{v_a+v_w} + \dfrac{d}{v_a-v_w} \\\\ t &=& d\cdot \left( \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \right) \\\\ \dfrac{t}{d} &=& \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \\\\ \dfrac{t}{d} &=& \dfrac{v_a-v_w+v_a+v_w}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{v_a^2-v_w^2} \\\\ \dfrac{d}{t} &=& \dfrac{v_a^2-v_w^2}{2v_a} \quad &| \quad \cdot 2v_a\\ 2v_a\cdot \dfrac{d}{t} &=& v_a^2-v_w^2 \quad &| \quad +v_w^2\\ v_w^2 + 2v_a\cdot \dfrac{d}{t} &=& v_a^2 \quad &| \quad -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a^2 -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a\cdot \left( v_a - \dfrac{2d}{t} \right) \quad &|d=990 \quad v_a = 600 \quad t=3\frac{1}{3}=\frac{10}{3}\ \text{hours}\\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990}{\frac{10}{3}} \right) \\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990\cdot 3}{10} \right) \\ v_w^2 &=& 600\cdot \left( 600 - 6\cdot 99 \right) \\ v_w^2 &=& 600\cdot \left( 600 - 594 \right) \\ v_w^2 &=& 600\cdot 6 \\ v_w^2 &=& 3600 \quad &| \quad \sqrt{} \\ v_w & = & \sqrt{3600} \\ \mathbf{v_w} & \mathbf{=} & \mathbf{60} \\ \hline \end{array}\)

 

 

The speed of the wind is \( \mathbf{60 \ \frac{km}{h}}\) .

 

laugh

 Aug 4, 2016
 #1
avatar+26388 
+15
Best Answer

An airplane makes a 990 km flight with a tailwind and returns,
flying into the same wind. The total flying time is 3 hours 20 minutes,
and the airplane’s speed in still air is 600 km/h. What is the speed of the wind?

 

velocity airplane:  \(v_a\)

velocity wind: \(v_w\)

 

time for the journey there: \(t_1\)

time for way back: \(t_2\)

 

distance: d = 990 km

total time: \(t = t_1 + t_2\)           

( t = 3 hours 20 minutes )


\(\begin{array}{|rcll|} \hline d &=& (v_a+v_w)\cdot t_1 \quad \text{ for the journey there} \\ d &=& (v_a-v_w)\cdot t_2 \quad \text{ for way back} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline t_1 &=& \dfrac{d}{v_a+v_w} \\ t_2 &=& \dfrac{d}{v_a-v_w} \\\\ t &=& t_1 + t_2 \\\\ t &=& \dfrac{d}{v_a+v_w} + \dfrac{d}{v_a-v_w} \\\\ t &=& d\cdot \left( \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \right) \\\\ \dfrac{t}{d} &=& \dfrac{1}{v_a+v_w} + \dfrac{1}{v_a-v_w} \\\\ \dfrac{t}{d} &=& \dfrac{v_a-v_w+v_a+v_w}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{(v_a+v_w)\cdot (v_a-v_w)} \\\\ \dfrac{t}{d} &=& \dfrac{2v_a}{v_a^2-v_w^2} \\\\ \dfrac{d}{t} &=& \dfrac{v_a^2-v_w^2}{2v_a} \quad &| \quad \cdot 2v_a\\ 2v_a\cdot \dfrac{d}{t} &=& v_a^2-v_w^2 \quad &| \quad +v_w^2\\ v_w^2 + 2v_a\cdot \dfrac{d}{t} &=& v_a^2 \quad &| \quad -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a^2 -2v_a\cdot \dfrac{d}{t}\\ v_w^2 &=& v_a\cdot \left( v_a - \dfrac{2d}{t} \right) \quad &|d=990 \quad v_a = 600 \quad t=3\frac{1}{3}=\frac{10}{3}\ \text{hours}\\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990}{\frac{10}{3}} \right) \\ v_w^2 &=& 600\cdot \left( 600 - \dfrac{2\cdot 990\cdot 3}{10} \right) \\ v_w^2 &=& 600\cdot \left( 600 - 6\cdot 99 \right) \\ v_w^2 &=& 600\cdot \left( 600 - 594 \right) \\ v_w^2 &=& 600\cdot 6 \\ v_w^2 &=& 3600 \quad &| \quad \sqrt{} \\ v_w & = & \sqrt{3600} \\ \mathbf{v_w} & \mathbf{=} & \mathbf{60} \\ \hline \end{array}\)

 

 

The speed of the wind is \( \mathbf{60 \ \frac{km}{h}}\) .

 

laugh

heureka Aug 4, 2016
 #2
avatar+129840 
+5

Let the speed of the wind in  km/ hr = S

 

The total flight time [ in hours]  with the wind =T1 =   D/R =  990 / (600 + S)

 

The total flight time [ in hours ] against the wind = T2 =  990 / (600 - S)

 

And the total flight time for both trips = Tt  =  3 hrs, 20 min  =   3 + 1/3 hrs  =  10/3 hrs  ......so

 

T1 + T2 =  Tt

 

990 / (600 + S)  +  990 / (600 - S)   = 10/3       simplify .....  multiply through by 3

 

2970 / (600 + S)  + 2970 /( 600- S)   = 10

 

[2970 (600 - S)  + 2970(600 + S) ] / [ (600 + S) (600 - S) ]   = 10         cross-multiply

 

]2970 (600 - S)  + 2970(600 + S) ]   =  10  [ (600 + S) (600 - S) ]

 

2970 * 600 * 2   =  10 (360,000 - S^2)     divide both sides by 10

 

297*1200 = 360,000 - S^2   rearrange

 

S^2  = 360,000 - 297*1200

 

S^2  =  3600      take the positive square root of both sides

 

S   = 60km / hr

 

 

 

cool cool cool

 Aug 4, 2016

2 Online Users

avatar