+0  
 
0
646
5
avatar+576 

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) 

I think It is a trig sub but the answer I keep getting is ridiculous.  Any suggestions are appreciated.

jboy314  Jun 24, 2014

Best Answer 

 #5
avatar+20025 
+10

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

$$\boxed{\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx \quad ?}$$

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

$$\int\limits_{x=0}^{x=\alpha } \underbrace{\sqrt{1-\sin^2{(z)}}}_{\cos{(z)}} \overbrace{\cos{(z)} \ dz }^{\ dx}=\int\limits_{x=0}^{x=\alpha }\cos^2{(z)} \ dz$$

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

$$\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}$$

$$\boxed{\sin^2{(z)}=1-\cos^2{(z)} }$$

$$\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}
=cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}$$

$$2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int$$

$$2\int{\cos^2{(z)}}\ dz
=
\underbrace{\int{\ dz }}_z
+ \sin{(z)}\cos{(z)}$$

$$\boxed{\int{\cos^2{(z)}}\ dz
=\dfrac{1}{2}
\left(
z+\sin{(z)}\cos{(z)}
\right)}$$

Back substitute:

$$\\z=\sin^{-1}{(x)}\\
\sin{(z)}=x\\
\cos{(z)}=\sqrt{1-x^2}$$

$$\begin{array}{rcl}
\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=&
\left[
\dfrac{1}{2}
\left(
\sin^{-1}{(x)}+x\sqrt{1-x^2}
\right)
}
\right]^{x=\alpha}_{x=0}\\\\
&=&\frac{1}{2}
\left(\;
\sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2}
\;\right)


\end{array}$$

heureka  Jun 25, 2014
 #1
avatar+93691 
+5

I don't know but I found this on the web.

http://math.stackexchange.com/questions/533082/integral-of-sqrt1-x2-using-integration-by-parts

Maybe it will help you?

Melody  Jun 24, 2014
 #2
avatar+576 
0

That's pretty nifty. Thanks!

jboy314  Jun 24, 2014
 #3
avatar+27057 
+10

Here's the trig substitution approach:

integral

Alan  Jun 24, 2014
 #4
avatar+576 
0

Looks like i totally blew the first step in my own work by not using a substitution for dx!  wow!  Thanks!

jboy314  Jun 24, 2014
 #5
avatar+20025 
+10
Best Answer

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

$$\boxed{\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx \quad ?}$$

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

$$\int\limits_{x=0}^{x=\alpha } \underbrace{\sqrt{1-\sin^2{(z)}}}_{\cos{(z)}} \overbrace{\cos{(z)} \ dz }^{\ dx}=\int\limits_{x=0}^{x=\alpha }\cos^2{(z)} \ dz$$

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

$$\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}$$

$$\boxed{\sin^2{(z)}=1-\cos^2{(z)} }$$

$$\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}
=cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}$$

$$2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int$$

$$2\int{\cos^2{(z)}}\ dz
=
\underbrace{\int{\ dz }}_z
+ \sin{(z)}\cos{(z)}$$

$$\boxed{\int{\cos^2{(z)}}\ dz
=\dfrac{1}{2}
\left(
z+\sin{(z)}\cos{(z)}
\right)}$$

Back substitute:

$$\\z=\sin^{-1}{(x)}\\
\sin{(z)}=x\\
\cos{(z)}=\sqrt{1-x^2}$$

$$\begin{array}{rcl}
\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=&
\left[
\dfrac{1}{2}
\left(
\sin^{-1}{(x)}+x\sqrt{1-x^2}
\right)
}
\right]^{x=\alpha}_{x=0}\\\\
&=&\frac{1}{2}
\left(\;
\sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2}
\;\right)


\end{array}$$

heureka  Jun 25, 2014

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.