+0  
 
0
29
1
avatar

The quadratic equation ax^2 + 8x + x = 0 has exactly one solution. If a + c = 10, and a < c, find the ordered pair (a, c).

 

My original answer was (-8, -2), but it was incorrect so I must have done something wrong.

 

Thanks in advance.

Guest Feb 13, 2018
Sort: 

1+0 Answers

 #1
avatar+82944 
+1

Do you mean this ???

 

ax^2 + 8x + c   =  0    ???   if so

 

If we have only one solution, the discriminant will = 0   .....so.....

 

8^2  - 4ac  = 0            and      a + c  =  10   ⇒    c  =  10 - a

 

So....substituting, we have

 

8^2 - 4a(10 - a)   = 0

 

8^2  - 40a + 4a^2  =  0

 

4a^2 - 40a +  64  =  0         divide through by 4

 

a^2  - 10a  + 16   =  0      factor

 

(a - 8) ( a - 2)  =  0

 

The solutions are a  = 8    or a  = 2

 

Note that if a  = 8, then c  = 2     or

If a  = 2  then c  = 8

 

But a > c  so     (a, c)   =   (  8, 2 )

 

Check the ggraph here that only one zero exists  at  x  = -1/2 :

 

https://www.desmos.com/calculator/idsuikzats

 

 

cool cool cool

CPhill  Feb 13, 2018

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details