We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
51
2
avatar

Find all values of k so that \(x^2 - (k - 3) x - k + 6 > 0\) for all x.

 Jul 23, 2019
 #1
avatar+93 
+2

I'm how to do this but this is my best shot. So first, you can think of it as a quadratic. So simplifying the expression you get \(x^2-kx-3x-k+6>0\)  

Using the quadratic formula, you get \(\frac{-(-k+3) \sqrt {(-k-3)^2-4(6-k)}}{2} > 0\)

simplify, \(\frac{k-3\sqrt{k^2+6x+9-24+4k}}{2} = \frac{k-3\sqrt{k^2+10x-13}}{2} > 0\)

I hope that helped, i just kind of bashed it out, now i hope you can solve it. I dont really know how to myself. Sorry if this post was no help at all :( 

 

-Evan cool

 Jul 23, 2019
 #2
avatar+102399 
+2

This will be a parabola  that turns upward

 

To find the x coordinate of the vertex we have that    (k -3) / 2

 

So

 

[(k - 3) /2]^2  - (k -3) (k - 3)/2 - k + 6 > 0

 

( k^2 - 6k + 9 ] / 4   - ( k^2 - 6k+ 9)/2  - k + 6 > 0      multiply through by 4

 

k^2 - 6k + 9  -  2(k^2 - 6k + 9)  - 4k + 24 > 0

 

k^2 - 6k + 9  - 2k^2 + 12k - 18 - 4k +  24 > 0

 

-k^2  + 2k  + 15 > 0         mutiply through by -1 and reverse the inequality sign

 

k^2 - 2k - 15  < 0  factor

 

(k - 5) ( k + 3) < 0

 

We have three possible intervals that solve this

 

(-infinity, -3)   or  ( - 3, 5)   or  ( 5, infinity)

 

The outside intervals do not provide the correct solution

 

So.....the interval   k = (-3, 5)   is correct   

 

cool cool cool

 Jul 23, 2019

14 Online Users

avatar
avatar