x + x + y = 14
L + L + z = 20
x + y + z = 12
x + z + L = 16
If the numbers x, y, z, L satisfy the equations above, find the value of x + z.
This is quite complicated but if u solve this system of equations i think you get: \(x=\frac{14}{3},\:z=\frac{8}{3},\:y=\frac{14}{3},\:L=\frac{26}{3}\)
\(\frac{14}{3}+\frac{8}{3}=\frac{22}{3}\)