\(\frac{\left(x+4\right)}{\left(x+5\right)}=\frac{\left(x-4\right)}{\left(2x\right)}+\frac{\left(x+3\right)}{\left(x+5\right)}\)
Multiply by LCM :
\(2x\left(x+4\right)=\left(x-4\right)\left(x+5\right)+2x\left(x+3\right)\)
\(2x^2+8x=3x^2+7x-20\)
Using quadratic formula to solve,
\(x_1=\frac{-\left(-1\right)+9}{2\cdot \:1},\:x_2=\frac{-\left(-1\right)-9}{2\cdot \:1}\)
\(x = 5, -4\)
\(\frac{\left(x+4\right)}{\left(x+5\right)}=\frac{\left(x-4\right)}{\left(2x\right)}+\frac{\left(x+3\right)}{\left(x+5\right)}, 2x\left(x+4\right)=\left(x-4\right)\left(x+5\right)+2x\left(x+3\right), x=5, x=-4\)
.Thanks guys.....another slightly different approach
We can subtract the second term from the right side from both sides and we get
(1) / (x + 5) =(x -4) /(2x)
Cross-multiply
2x = (x + 5) ( x - 4)
2x = x^2 + x -20
x^2 -x - 20 = 0
Factor
(x -5) (x + 4) = 0
Set each factor to 0 and solve for x and we get that x= 5 or x = -4