+0  
 
0
94
3
avatar

A and B are two points on a circle with center O, and C lies outside the circle, on ray AB. Given AB = 24, BC = 30, and OA = 16, find OC.

 Jun 4, 2021
 #1
avatar+179 
+1

OC=\(\sqrt{1876}\)

 

Proof  

 

The proof is difficult to explain concisely and without a diagram, but basically, draw AB, O, and the perpendicular from O to the midpoint of AB. The intersection will be labeled D.  Thus, AD, DO, and OA will form a right triangle, hypotenuse of 16 and one leg of AD of 12.  The other leg (DO) is \(\sqrt{112}\) through the Pythagorean theorem.  Now, consider the right triangle DCO.  DC= 30+12 = 42, and DO =\(\sqrt{112}\).  From the Pythagorean theorem, OC = \(\sqrt{112+42^2} \) or \(\sqrt{1876}\).  

 

Have a great day!

 Jun 4, 2021
 #3
avatar+775 
0

"The proof is difficult to explain concisely and without a diagram."

 

This reminds me of the quote "I have discovered a truly remarkable proof of this theorem which this margin is too small to contain"

 

cheeky

 #2
avatar+121054 
+1

Here is  what EnchantedLava is saying

 

AB is a chord on the  circle.....call the mid point D.....then AD =   DB =   24/2 = 12

 

And  we can form  right triangle   AOC with   AO =   16  = the hypotenuse,  and leg AD =  12

And OD  will  form the other leg   such that    AO^2 - AD^2 =  OD^2

16^2  - 12^2   =     112  =  OD^2

 

And we can form another right triangle  DOC such that OD and DC are legs.....and  DC  = ( DB + BC)  = 12 + 30 = 42 

And OC will form the hypotenuse of this triangle....such that

 

OC  =  sqrt  ( OD^2  + DC^2)  = sqrt (112  + 42^2)  = sqrt (1876)  

 

See the image here :

 

 

 

 

cool cool cool

 Jun 4, 2021

46 Online Users

avatar