A cubic polynomial \(z^3+az^2+bz+c\) with integer coefficients has an integer solution. Which of the following cannot be a solution to this polynomial?
\(\frac{3}{2}+\frac{\sqrt{19}}{2}i \)
\(\frac{5}{2}+\frac{\sqrt{5}}{2}i\)
\(\frac{7}{2}+\frac{\sqrt{15}}{2}i\)
\(\frac{9}{2}+\frac{\sqrt{19}}{2}i \)
\(2-\sqrt{2}i\)