+0  
 
+1
82
1
avatar+22 

A cubic polynomial \(z^3+az^2+bz+c\) with integer coefficients has an integer solution. Which of the following cannot be a solution to this polynomial?

 

\(\frac{3}{2}+\frac{\sqrt{19}}{2}i \)

\(\frac{5}{2}+\frac{\sqrt{5}}{2}i\)

\(\frac{7}{2}+\frac{\sqrt{15}}{2}i\)

\(\frac{9}{2}+\frac{\sqrt{19}}{2}i \)

\(2-\sqrt{2}i\)

 May 22, 2021
 #1
avatar
0

The number 7/2 + sqrt(15)/2*i cannot be a root.

 Jun 6, 2021

42 Online Users

avatar