We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
58
5
avatar+186 

What is the number of degrees in the smaller angle formed by the hour and minute hands of a clock at 5:44?

 Sep 1, 2019
 #1
avatar+103148 
+3

The hour hand  will  move at  a rate  of 

 

360°  in 12 hrs

30° in  1 hr

30°/ 60  =  .5° in one minute

 

So  at   5:44.....the hour  hand has  moved   5 (30°) +  44(.5°)  =  [150 + 22]° = 172°   from 12 noon

 

The minute hand  will move  at a rate of 360°/ 60  = 6° per minute

So at 5:44...it will have moved  [44 * 6]°  = 264°  from the top of the hour

 

So...the smaller angle formed by the hands  =  [264 - 172]°  =  92°

 

 

 

cool cool cool

 Sep 1, 2019
 #2
avatar+4322 
+1

You can also use this formula. \(|30h-5.5m|\), where \(h\) denotes the number of hours and \(m\) is the number of minutes. Thus, the answer is \(|150-242|=|-92|=92\) degrees.

 Sep 2, 2019
edited by tertre  Sep 2, 2019
 #3
avatar+23086 
+3

What is the number of degrees in the smaller angle formed by the hour and minute hands of a clock at 5:44?

 

\(\text{Let the angle formed by the minute hand and hour hand in degrees $\mathbf{ \Delta \alpha }$ } \\ \text{Let the time in hours $\mathbf{ t }$ }\)

 

The formula between the two values \(\Delta \alpha\) and \(t\) is:
\(\boxed{~ \Delta \alpha = 330 \cdot t } \)

 

\(\begin{array}{|rcll|} \hline \Delta \alpha &=& 330 \cdot t \quad | \quad t= 5:44 = 5+\dfrac{44}{60}= 5.7\overline{3}\ h \\ &=& 330 \cdot 5.7\overline{3} \\ &=& 1892 \\ &=& 1892 -5\cdot 360 \\ &=& 1892 - 1800 \\ \mathbf{\Delta \alpha} &=& \mathbf{ 92^\circ } \\ \hline \end{array}\)

 

laugh

 Sep 2, 2019
 #4
avatar+103148 
+2

Thanks, tertre and heureka.....those "formulas"  provide a nice shorthand way to solve this type of problem  !!!!

 

 

cool cool cool

CPhill  Sep 2, 2019
 #5
avatar+23086 
+2

Thank you, CPhill !

 

laugh

heureka  Sep 3, 2019

32 Online Users

avatar