+0  
 
0
14
2
avatar+1032 

In triangle $ABC$, $\angle A = 30^\circ$ and $\angle B = 90^\circ$. Point $X$ is on side $\overline{AC}$ such that line segment $\overline{BX}$ bisects $\angle ABC$. If $BC = 12$, then find the area of triangle $BXA$.

 Jan 11, 2024
 #1
avatar+288 
+1

Well, we can see that this is a special right triangle, a 30-60-90 triangle, where m angle A = 30, m angle C = 60, and m angle B = 90.

 

The side lengths are in the ratio 1:sqrt3:2, which in our case is 12:12 x sqrt3:24

 

12 x sqrt 3 = 20.7846096908 or approx 20.8 as shown in the graph below:

 

 

ALERT:     Sorry, the top point is meant to be A, the bottom left one B, and the bottom right one C.

 

We can multiply 12x 20.7846 x 1/2 and get:

 

124.7076

 

or approximately

 

124.71

 

Answer: 124.71

 Jan 11, 2024
 #2
avatar+128448 
+1

A

 

12sqrt 3          X

 

B                12                  C

 

Hypotenuse  = 12 * 2   = 24

 

Let AX =  x

Let CX =  24 -x 

 

Since BX is an angle  bisector

 

AX / AB =  CX / AB

 

x / (12sqrt 3)  = (24 - x)  /12

 

x /sqrt 3  =  24 - x

 

x =  (24 - x) sqrt 3

 

x = 24sqrt 3  -  sqrt (3)x

 

x + sqrt 3  = 24 sqrt 3

 

x ( 1 + sqrt 3) =  24 sqrt (3)

 

x =  [ 24sqrt (3) ] / [ 1 + sqrt 3]

 

x = [24 sqrt 3 ] [1 - sqrt 3] / [ 1 -3]

 

x = -12 [ 1 - sqrt 3]   =  12 [ sqrt (3) - 1]  = AX

 

[BXA  ]    = (1/2) (AB)(AX) sin (30°)  =   (1/2)(12sqrt (3))(12[sqrt (3) - 1]) (1/2)  =

 

36 [sqrt (3) ] [ sqrt (3)   - 1]  = 

 

36 ( 3 - sqrt 3 )   ≈ 45.65

 

 

 

cool cool cool

 Jan 12, 2024
edited by CPhill  Jan 12, 2024
edited by CPhill  Jan 12, 2024

0 Online Users