+0  
 
0
10
1
avatar+1911 

Let ABC be a triangle, and let its angle bisectors be AD, BE, and CF which intersect at I. If DI=3, BD=4 and BI=6 then compute the area of triangle BID.

 Aug 9, 2024
 #1
avatar+1926 
+1

Let's use Heron's Formula to solve this problem. 

First, let's note what Heron's Formula is. The formula states that \(\text{Area of Triangle} = \sqrt{s(s-a)(s-b)(s-c)}\) for a triangle with sides \(a,b,c\) and semiperimeter of \(\frac{a+b+c}{2}\). We can use this formula to find the area of BID. 

 

First, let's find the semiperimeter. Plugging in values, we get \(\frac{3+4+6}{2}=\frac{13}{2}\) as semiperimeter. 

Now, we can go forward and find the area. We get

\(Area = \sqrt{\frac{13}{2}(\frac{13}{2}-3)(\frac{13}{2}-4)(\frac{13}{2}-6)}\)

\(Area = \sqrt{\frac{455}{16}}=\frac{\sqrt{455}}{4}\)

 

This rounds to approximately 5.3327. 

 

Thanks! :)

 Aug 9, 2024
edited by NotThatSmart  Aug 9, 2024

1 Online Users