Solve 64^x = 16^(x−1)
Hello,
64^x = 16^(x−1),
We can write 64^x to and 16^(x−1) to:
(\({4}^{3x}={4}^{2x-2}\)),
(\(3x=2x-2\)),
(\(3x-2x=-2\)),
(\(x=-2\))
Straight
That is a nice method Straight :)
\(64^x = 16^{(x−1)}\\ log_2 64^x = log_2 16^{(x−1)}\\ xlog_2 64 =(x-1) log_2 16\\ x*6 =(x-1) *4\\ 6x=4x-4\\ 2x=-4\\ x=-2\\~\\ check\\ LHS=64^{-2}=(2^6)^{-2}=2^{-12}\\ RHS=16^{-2-1}=16^{-3}=(2^4)^{-3}=2^{-12}=LHS \)