Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
4393
3
avatar+166 

What is the residue of 9^2010, modulo 17?

 

How many zeroes does 10! end in, when written in base 11?

 

Let $n$ be the integer such that $0 \le n < 31$ and $3n \equiv 1 \pmod{31}$. What is $\left(2^n\right)^3 - 2 \pmod{31}$? Express your answer as an integer from $0$ to $30$, inclusive.

 

What is the sum of all positive integer solutions less than or equal to $20$ to the congruence $13(3x-2)\equiv 26\pmod 8$?

 May 27, 2018
 #1
avatar
+1

9^2010 mod 17 = 13

 

10! base 10 =3,628,800 =205940a in base 11. So, there are no trailing zeros in base 11.

 

Sorry, can't read the other 2.

 May 27, 2018
 #2
avatar+985 
+2

What is the residue of 92010, modulo 17?

 

We can see the pattern:

 

919(mod17)9213(mod17)9315(mod17)9416(mod17)958(mod17)964(mod17)972(mod17)981(mod17)

The residues then repeat after that. 

 

Therefore, since 2010÷8=251 R 2, the residue is 13. 

 

I hope this helped,

 

Gavin

 May 27, 2018
 #3
avatar+985 
+2

Let n be the integer such that 0n<31 and 3n1(mod31). What is (2n)32(mod31)? Express your answer as an integer from 0 to 30, inclusive.

 

3n1(mod31)3n21121(mod31)63n21(mod31)62n+n21(mod31)n21(mod31)

 

If 0n<31 and 3n1(mod31), n = 21

 

You can finish this on your own. 

 

What is the sum of all positive integer solutions less than or equal to 20 to the congruence 13(3x2)26(mod8)?

 

Note: you usually can not divide in linear congruences, but since 13 is relatively prime to 8, you can. 

 

13(3x2)26(mod8)3x22(mod8)3x4(mod8)3x343(mod8)9x12(mod8)8x+x12(mod8)x12(mod8)

 

I hope this helped,


Gavin

 May 27, 2018
edited by GYanggg  May 27, 2018

2 Online Users

avatar
avatar