+0  
 
+9
461
3
avatar+737 

Find the constant t such that (5x^2 - 6x + 7)(4x^2 +tx + 10) = 20x^4 -54x^3 +114x^2 -102x +70.

MIRB16  Aug 4, 2017

Best Answer 

 #2
avatar+92862 
+1

 

Here's another way to determine t  with polynomial long division

 

                                 4x^2  -  6x  + 10

 

5x^2 - 6x + 7     [     20x^4 -  54x^3  + 114x^2  - 102x  + 70  ] 

                                20x^4 - 24x^3  +    28x^2

                                ________________________________

                                             - 30x^3 +  86x^2  - 102x   

                                            - 30x^3  + 36x^2  -    42x

                                            _____________________  

                                                            50x^2  -  60x  + 70

                                                            50x^2 -  60x   + 70

                                                           ___________________

 

So...it appears that  t =  -6

 

 

 

cool cool cool                                 

CPhill  Aug 4, 2017
 #1
avatar
+1

I hope you meant solve for the variable t, because this took me too long for me to get mad if that's not what you meant

 

(5x2−6x+7)(4x2+tx+10)=20x4−54x3+114x2−102x+70

 

Step 1: Add -70 to both sides.

5tx3+20x4−6tx2−24x3+7tx+78x2−60x+70+−70=20x4−54x3+114x2−102x+70+−70

5tx3+20x4−6tx2−24x3+7tx+78x2−60x=20x4−54x3+114x2−102x

 

Step 2: Add -78x^2 to both sides.

5tx3+20x4−6tx2−24x3+7tx+78x2−60x+−78x2=20x4−54x3+114x2−102x+−78x2

5tx3+20x4−6tx2−24x3+7tx−60x=20x4−54x3+36x2−102x

 

Step 3: Add -20x^4 to both sides.

5tx3+20x4−6tx2−24x3+7tx−60x+−20x4=20x4−54x3+36x2−102x+−20x4

5tx3−6tx2−24x3+7tx−60x=−54x3+36x2−102x

 

Step 4: Add 60x to both sides.

5tx3−6tx2−24x3+7tx−60x+60x=−54x3+36x2−102x+60x

5tx3−6tx2−24x3+7tx=−54x3+36x2−42x

 

Step 5: Add 24x^3 to both sides.

5tx3−6tx2−24x3+7tx+24x3=−54x3+36x2−42x+24x3

5tx3−6tx2+7tx=−30x3+36x2−42x

 

Step 6: Factor out variable t.

t(5x3−6x2+7x)=−30x3+36x2−42x

 

Step 7: Divide both sides by 5x^3-6x^2+7x.

t(5x3−6x2+7x)5x3−6x2+7x=−30x3+36x2−42x5x3−6x2+7x

t=−30x2+36x−425x2−6x+7

 

Answer:

t=−30x2+36x−425x2−6x+7

Guest Aug 4, 2017
 #2
avatar+92862 
+1
Best Answer

 

Here's another way to determine t  with polynomial long division

 

                                 4x^2  -  6x  + 10

 

5x^2 - 6x + 7     [     20x^4 -  54x^3  + 114x^2  - 102x  + 70  ] 

                                20x^4 - 24x^3  +    28x^2

                                ________________________________

                                             - 30x^3 +  86x^2  - 102x   

                                            - 30x^3  + 36x^2  -    42x

                                            _____________________  

                                                            50x^2  -  60x  + 70

                                                            50x^2 -  60x   + 70

                                                           ___________________

 

So...it appears that  t =  -6

 

 

 

cool cool cool                                 

CPhill  Aug 4, 2017
 #3
avatar+27237 
+4

Another way is simply to set x = 1, to get:

 

6*(t + 14) = 48

 

t + 14 = 8

 

t = 8 - 14 → -6

 

(in fact you can set x to be pretty much anything you like, apart from zero, and you'll get the same result!)

 

.

Alan  Aug 5, 2017
edited by Alan  Aug 5, 2017

26 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.