Find the constant t such that (5x^2 - 6x + 7)(4x^2 +tx + 10) = 20x^4 -54x^3 +114x^2 -102x +70.
Here's another way to determine t with polynomial long division
4x^2 - 6x + 10
5x^2 - 6x + 7 [ 20x^4 - 54x^3 + 114x^2 - 102x + 70 ]
20x^4 - 24x^3 + 28x^2
________________________________
- 30x^3 + 86x^2 - 102x
- 30x^3 + 36x^2 - 42x
_____________________
50x^2 - 60x + 70
50x^2 - 60x + 70
___________________
So...it appears that t = -6
I hope you meant solve for the variable t, because this took me too long for me to get mad if that's not what you meant
(5x2−6x+7)(4x2+tx+10)=20x4−54x3+114x2−102x+70
Step 1: Add -70 to both sides.
5tx3+20x4−6tx2−24x3+7tx+78x2−60x+70+−70=20x4−54x3+114x2−102x+70+−70
5tx3+20x4−6tx2−24x3+7tx+78x2−60x=20x4−54x3+114x2−102x
Step 2: Add -78x^2 to both sides.
5tx3+20x4−6tx2−24x3+7tx+78x2−60x+−78x2=20x4−54x3+114x2−102x+−78x2
5tx3+20x4−6tx2−24x3+7tx−60x=20x4−54x3+36x2−102x
Step 3: Add -20x^4 to both sides.
5tx3+20x4−6tx2−24x3+7tx−60x+−20x4=20x4−54x3+36x2−102x+−20x4
5tx3−6tx2−24x3+7tx−60x=−54x3+36x2−102x
Step 4: Add 60x to both sides.
5tx3−6tx2−24x3+7tx−60x+60x=−54x3+36x2−102x+60x
5tx3−6tx2−24x3+7tx=−54x3+36x2−42x
Step 5: Add 24x^3 to both sides.
5tx3−6tx2−24x3+7tx+24x3=−54x3+36x2−42x+24x3
5tx3−6tx2+7tx=−30x3+36x2−42x
Step 6: Factor out variable t.
t(5x3−6x2+7x)=−30x3+36x2−42x
Step 7: Divide both sides by 5x^3-6x^2+7x.
t(5x3−6x2+7x)5x3−6x2+7x=−30x3+36x2−42x5x3−6x2+7x
t=−30x2+36x−425x2−6x+7
Answer:
t=−30x2+36x−425x2−6x+7
Here's another way to determine t with polynomial long division
4x^2 - 6x + 10
5x^2 - 6x + 7 [ 20x^4 - 54x^3 + 114x^2 - 102x + 70 ]
20x^4 - 24x^3 + 28x^2
________________________________
- 30x^3 + 86x^2 - 102x
- 30x^3 + 36x^2 - 42x
_____________________
50x^2 - 60x + 70
50x^2 - 60x + 70
___________________
So...it appears that t = -6