Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
819
2
avatar

Let a be a real number for which there exists a unique value of  b such that the quadratic equation x2+2bx+(ab)=0 has one real solution. Find a .

 Jul 16, 2019
 #1
avatar+6252 
+1

 

one real solution means that the discriminant is zeroin the quadratic equation ax2+bx+c the discriminant is given by D=b24acherea=1, b=2b, c=abD=(2b)24(ab)=4b24a+4ab D=04b24a+4ab=0a=b+b2

.
 Jul 16, 2019
edited by Rom  Jul 16, 2019
 #2
avatar+130477 
+1

To have one real solution the discriminant must = 0   ....so...

 

(2b)^2 - 4 (1) (a - b)  = 0

 

4b^2 - 4a + 4b  =  0

 

b^2 - a + b  = 0

 

b^2 + b  =   a

 

 

cool cool cool

 Jul 16, 2019

1 Online Users