+0

# help with this

+1
80
1
+350

Use the diagram to find the measure of exterior angle BCD.

Triangle A B C has angles labeled as follows: A, (18x + 12) degrees; B, 6x degrees; C, unlabeled. Point C lies on Ray A D. The outside angle B C D is labeled (27x - 3) degrees.

left parenthesis 27 x minus 3 right parenthesis degrees(27x − 3)°

6 x degrees6x°

left parenthesis 18 x plus 12 right parenthesis degrees(18x + 12)°

DCAB

The measure of exterior angle BCD is ___

#1
+6250
+2

m∠BCA  +  m∠BCD   =   180

m∠BCA   =   180  -  m∠BCD

m∠BCA   =   180  -  (27x - 3)

the sum of the angles in a triangle  =  180°

6x  +  (18x + 12)  +  m∠BCA   =   180

6x  +  (18x + 12)  +  (180 - (27x - 3))   =   180

6x  +  18x - 27x + 12 + 180 + 3   =   180

-3x   =   -15

x   =   5

m∠BCD   =   (27x - 3)°

m∠BCD   =   (27(5) - 3)°

m∠BCD   =   132°

hectictar  Dec 5, 2017
Sort:

#1
+6250
+2

m∠BCA  +  m∠BCD   =   180

m∠BCA   =   180  -  m∠BCD

m∠BCA   =   180  -  (27x - 3)

the sum of the angles in a triangle  =  180°

6x  +  (18x + 12)  +  m∠BCA   =   180

6x  +  (18x + 12)  +  (180 - (27x - 3))   =   180

6x  +  18x - 27x + 12 + 180 + 3   =   180

-3x   =   -15

x   =   5

m∠BCD   =   (27x - 3)°

m∠BCD   =   (27(5) - 3)°

m∠BCD   =   132°

hectictar  Dec 5, 2017

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details