+0  
 
+1
258
1
avatar+350 

Use the diagram to find the measure of exterior angle BCD.

Triangle A B C has angles labeled as follows: A, (18x + 12) degrees; B, 6x degrees; C, unlabeled. Point C lies on Ray A D. The outside angle B C D is labeled (27x - 3) degrees.

left parenthesis 27 x minus 3 right parenthesis degrees(27x − 3)°

6 x degrees6x°

left parenthesis 18 x plus 12 right parenthesis degrees(18x + 12)°

DCAB

The measure of exterior angle BCD is ___

 

ladiikeiii  Dec 5, 2017

Best Answer 

 #1
avatar+7155 
+2

m∠BCA  +  m∠BCD   =   180

m∠BCA   =   180  -  m∠BCD

m∠BCA   =   180  -  (27x - 3)

 

the sum of the angles in a triangle  =  180°

6x  +  (18x + 12)  +  m∠BCA   =   180

6x  +  (18x + 12)  +  (180 - (27x - 3))   =   180

6x  +  18x - 27x + 12 + 180 + 3   =   180

-3x   =   -15

x   =   5

 

m∠BCD   =   (27x - 3)°

m∠BCD   =   (27(5) - 3)°

m∠BCD   =   132°

hectictar  Dec 5, 2017
 #1
avatar+7155 
+2
Best Answer

m∠BCA  +  m∠BCD   =   180

m∠BCA   =   180  -  m∠BCD

m∠BCA   =   180  -  (27x - 3)

 

the sum of the angles in a triangle  =  180°

6x  +  (18x + 12)  +  m∠BCA   =   180

6x  +  (18x + 12)  +  (180 - (27x - 3))   =   180

6x  +  18x - 27x + 12 + 180 + 3   =   180

-3x   =   -15

x   =   5

 

m∠BCD   =   (27x - 3)°

m∠BCD   =   (27(5) - 3)°

m∠BCD   =   132°

hectictar  Dec 5, 2017

11 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.