Compute
(1+tan1∘)(1+tan2∘)(1+tan3∘)⋯(1+tan45∘)
Formula:
tan(x−y)=tanx−tany1+tanxtanytan(45∘)=1
(1+tan1∘)(1+tan2∘)(1+tan3∘)⋯(1+tan22∘)(1+tan23∘)⋯(1+tan43∘)(1+tan44∘)(1+tan45∘)=(1+tan1∘)(1+tan44∘)×(1+tan2∘)(1+tan43∘)×(1+tan3∘)(1+tan42∘)⋮×(1+tan22∘)(1+tan23∘)×(1+tan45∘)=(1+tan1∘)(1+tan(45∘−1∘))×(1+tan2∘)(1+tan(45∘−2∘))×(1+tan3∘)(1+tan(45∘−3∘))⋮×(1+tan22∘)(1+tan(45∘−22∘))×(1+tan45∘)=(1+tan1∘)(1+tan45∘−tan1∘1+tan45∘tan1∘)×(1+tan2∘)(1+tan45∘−tan2∘1+tan45∘tan2∘)×(1+tan3∘)(1+tan45∘−tan3∘1+tan45∘tan3∘)⋮×(1+tan22∘)(1+tan45∘−tan22∘1+tan45∘tan22∘)×(1+tan45∘)|tan45∘=1=(1+tan1∘)(1+1−tan1∘1+tan1∘)×(1+tan2∘)(1+1−tan2∘1+tan2∘)×(1+tan3∘)(1+1−tan3∘1+tan3∘)⋮×(1+tan22∘)(1+1−tan22∘1+tan22∘)×(1+1)=(1+tan1∘)∗(1+tan1∘+1−tan1∘)(1+tan1∘)×(1+tan2∘)∗(1+tan2∘+1−tan2∘)(1+tan2∘)×(1+tan3∘)∗(1+tan3∘+1−tan3∘)(1+tan3∘)⋮×(1+tan22∘)∗(1+tan22∘+1−tan22∘)(1+tan22∘)×2=2×2×2⋮×2×2=222×2=223=8388608