We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
54
1
avatar+38 

Consider the vectors \(\mathbf{v} = \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 3\\2 \end{pmatrix}\), and \(\mathbf{x} = \begin{pmatrix}1 \\ 0 \end{pmatrix}.\) If the vectors \(\mathbf{v}, \mathbf{w} \text{ and }\mathbf{x}\) are linearly independent, answer with 0. If they aren't, find coefficients a,b, and c, not all 0, such that \(a \begin{pmatrix} 1 \\ 3 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} + c \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix}0 \\ 0 \end{pmatrix}\) and answer with \(\dfrac{a+b}{c}\)

 

 

 

can someone please help. thanks

 Jun 5, 2019
 #1
avatar+38 
0

friendly bump to this problem

 Jun 8, 2019

4 Online Users

avatar
avatar