Consider the vectors \(\mathbf{v} = \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 3\\2 \end{pmatrix}\), and \(\mathbf{x} = \begin{pmatrix}1 \\ 0 \end{pmatrix}.\) If the vectors \(\mathbf{v}, \mathbf{w} \text{ and }\mathbf{x}\) are linearly independent, answer with 0. If they aren't, find coefficients a,b, and c, not all 0, such that \(a \begin{pmatrix} 1 \\ 3 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} + c \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix}0 \\ 0 \end{pmatrix}\) and answer with \(\dfrac{a+b}{c}\)
can someone please help. thanks