See my (corrected) answer at http://web2.0calc.com/questions/if-a-b-c-pi-amp-cosa-cosb-cosc-then-prove#r2
If A+B+C=pi & cosA=cosB*cosC then prove that-
tanA=tanB+tanC
A = pi - (B + C) ......therefore.....
sin A = sin [(pi) - ( B + C) ]
sinA = sin(pi)cos(B +C) - sin(B+ C)cos(pi) ...... [ sin(pi) = 0, cos(pi) = -1 ]
sinA = sin(B + C)
sinA = [ sinBcosC + sinCcosB]
Therefore
tanA = sinA/cosA [given → cosA = cosBcosC]
tanA = [ sinBcosC + sinCcosB] / [cosBcosC]
tanA = [sinBcosB]/ [cosBcosC] + [sinCcosB] / [cosBcosC]
tan A = [sinB/cosC] + [ sinC/cosC]
tanA = tanB + tanC