We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
109
2
avatar

Given that \(A_k = \frac {k(k - 1)}2\cos\frac {k(k - 1)\pi}2,\) find \(A_{19} + A_{20} + \cdots + A_{98}.\)

 Aug 19, 2019
 #1
avatar
+1

∑[k*(k - 1) /2 *cos (k*(k - 1) *pi /2), k, 19, 98] = - 40
A1 - A18 = (0, -1, -3, 6, 10, -15, -21, 28, 36, -45, -55, 66, 78, -91, -105, 120, 136, -153)
A19 - A98 =(-171, 190, 210, -231, -253, 276, 300, -325, -351, 378, 406, -435, -465, 496, 528, -561, -595, 630, 666, -703, -741, 780, 820, -861, -903, 946, 990, -1035, -1081, 1128, 1176, -1225, -1275, 1326, 1378, -1431, -1485, 1540, 1596, -1653, -1711, 1770, 1830, -1891, -1953, 2016, 2080, -2145, -2211, 2278, 2346, -2415, -2485, 2556, 2628, -2701, -2775, 2850, 2926, -3003, -3081, 3160, 3240, -3321, -3403, 3486, 3570, -3655, -3741, 3828, 3916, -4005, -4095, 4186, 4278, -4371, -4465, 4560, 4656, -4753)>>Total = - 40

Note: somebody should ckeck this. Thanks.

 Aug 19, 2019
 #2
avatar+23321 
+3

Given that \(A_k = \dfrac {k(k - 1)}2\cos\left( \dfrac {k(k - 1)\pi}2 \right)\),
find \(A_{19} + A_{20} + \cdots + A_{98}\).

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ A_{19} + A_{20} + \cdots + A_{98}} \quad | \quad \small{98-18 = 80 \text{ terms}} \\\\ &=& \sum \limits_{k=19}^{98} \dfrac {k(k - 1)}2\cos\left( \dfrac {k(k - 1)\pi}2 \right) \\\\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)\cos\left( \dfrac {k(k - 1)\pi}2 \right) \\\\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)\cos(n\pi) \quad | \quad n = \dfrac{k(k - 1)}2 \\ && \boxed{\cos(n\pi)=\cos^n(\pi)\quad | \quad \cos(\pi) = -1 \\\cos(n\pi) = (-1)^{n} } \\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)(-1)^{n} \\\\ &=&\mathbf{\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)(-1)^{\left(\dfrac{k(k - 1)}2\right)} } \\ \hline &=& \small{\dfrac{1}{2}\Big( -18\cdot 19+19\cdot 20+20\cdot 21-21\cdot 22-22\cdot 23+23\cdot 24+24\cdot 25-25\cdot 26 +- \ldots } \\ && \small{-94\cdot 95+95\cdot 96 + 96\cdot 97-97\cdot 98 \Big)} \quad | \quad \small{80 \text{ terms}} \\ &=& \small{\dfrac{1}{2}\Big( 19(-18+20)+21(20-22)+23(-22+24)+25(24-26) + \ldots }\\ && \small{+95(-94+96) +97(96-98)\Big)} \quad | \quad \small{40 \text{ terms}} \\ &=& \small{\dfrac{1}{2}\Big( 2\cdot 19 -2\cdot 21+2\cdot 23-2\cdot 25 +- \ldots +2\cdot 95 -2\cdot 97 \Big)} \quad | \quad \small{40 \text{ terms}} \\ &=& \small{\dfrac{2}{2}( 19 - 21+ 23- 25 +- \ldots + 95 - 97 )} \quad | \quad \small{40 \text{ terms}} \\ &=& \underbrace{ \underbrace{19-21}_{=-2} + \underbrace{23-25}_{=-2} + \underbrace{27-29}_{=-2} +- \ldots + \underbrace{91-93}_{=-2} + \underbrace{95-97}_{=-2}}_{ 20 \text{ terms} } \\ &=& -2\cdot 20 \\ &=& \mathbf{-40} \\ \hline \end{array}\)

 

laugh

 Aug 20, 2019

23 Online Users