+0  
 
0
144
1
avatar

The side lengths of a right-angled triangle are in geometric progression and the shortest side has length 2. What is the length of the hypotenuse?

 Nov 27, 2019
 #1
avatar+109563 
+1

We have that  the sides are

 

2 , 2r , 2r^2          so.....by the Pythagorean Theorem

 

2^2  + (2r)^2  = (2r^2)^2

 

4  + 4r^2  = 4r^4         divide through by 4

 

1  + r^2  = r^4        rearrange

 

r^4 - r^2  - 1  =   0             let  r^2   = m    and we have

 

m^2 - m - 1  = 0            complete the square on m

 

m^2 - m + 1/4  = 1 + 1/4

 

(m - 1/2)^2 = 5/4           take the positive root

 

m - 1/2  = √5 / 2

 

m = [ 1 + √5 ] / 2 =  r^2      ⇒  this is  known as  the irrational number  "Phi"

 

So  

 

m = r^2 = Phi

√m  = r  =  √Phi

 

So.....the side lengths are

 

2 ,  2 √Phi , 2Phi

 

So....the hypotenuse is    2Phi  units in length

 

Proof :

 

2^2  + (2√Phi)^2 = (2Phi)^2

 

4 + 4Phi  =  4Phi^2        divide through by 4

 

1 + Phi   = Phi^2     which is an identity

 

 

cool cool cool

 Nov 27, 2019
edited by CPhill  Nov 27, 2019
edited by CPhill  Nov 28, 2019

46 Online Users

avatar
avatar
avatar
avatar