We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
1
avatar

The side lengths of a right-angled triangle are in geometric progression and the shortest side has length 2. What is the length of the hypotenuse?

 Nov 27, 2019
 #1
avatar+105476 
+1

We have that  the sides are

 

2 , 2r , 2r^2          so.....by the Pythagorean Theorem

 

2^2  + (2r)^2  = (2r^2)^2

 

4  + 4r^2  = 4r^4         divide through by 4

 

1  + r^2  = r^4        rearrange

 

r^4 - r^2  - 1  =   0             let  r^2   = m    and we have

 

m^2 - m - 1  = 0            complete the square on m

 

m^2 - m + 1/4  = 1 + 1/4

 

(m - 1/2)^2 = 5/4           take the positive root

 

m - 1/2  = √5 / 2

 

m = [ 1 + √5 ] / 2 =  r^2      ⇒  this is  known as  the irrational number  "Phi"

 

So  

 

m = r^2 = Phi

√m  = r  =  √Phi

 

So.....the side lengths are

 

2 ,  2 √Phi , 2Phi

 

So....the hypotenuse is    2Phi  units in length

 

Proof :

 

2^2  + (2√Phi)^2 = (2Phi)^2

 

4 + 4Phi  =  4Phi^2        divide through by 4

 

1 + Phi   = Phi^2     which is an identity

 

 

cool cool cool

 Nov 27, 2019
edited by CPhill  Nov 27, 2019
edited by CPhill  Nov 28, 2019

26 Online Users

avatar
avatar
avatar