+0  
 
0
103
4
avatar

When simplified, what is the value of $\sqrt{3} \times 3^{\frac{1}{2}} + 12 \div 3 \times 2 - 4^{\frac{3}{2}}$?

 Apr 7, 2023
 #1
avatar
0

This simplifies to 5.

 Apr 7, 2023
 #2
avatar
0

nope

Guest Apr 7, 2023
 #3
avatar
0

its 3 

Guest Apr 7, 2023
 #4
avatar
0

Simplify the following:
sqrt(3) sqrt(3) + 12/3×2 - 4^(3/2)

Express 12/3×2 as a single fraction.
12/3×2 = (12×2)/3:
sqrt(3) sqrt(3) + (12×2)/3 - 4^(3/2)

In (12×2)/3, divide 12 in the numerator by 3 in the denominator.
12/3 = (3×4)/3 = 4:
sqrt(3) sqrt(3) + 4×2 - 4^(3/2)

Separate the exponent of 4^(3/2) into integer and fractional parts.
4^(3/2) = 4^(2/2 + 1/2) = 4^(2/2)×sqrt(4):
sqrt(3) sqrt(3) + 4×2 - 4^(2/2) sqrt(4)

Any nonzero number divided by itself is one.
2/2 = 1:
sqrt(3) sqrt(3) + 4×2 - 4 sqrt(4)

Combine products of like terms.
sqrt(3) sqrt(3) = 3:
3 + 4×2 - 4 sqrt(4)

Multiply 4 and 2 together.
4×2 = 8:
3 + 8 - 4 sqrt(4)

Evaluate 3 + 8 - 4 sqrt(4).
3 + 8 - 4 sqrt(4) = 3:
= 3 - final answer

 Apr 7, 2023

1 Online Users