Let the first integer be x so we don't have to answer the question after we have finished the problem. So the 100th term will be x+99. So the sum of these 100 integers are 100x + 4950. Since the sum are 100^100. So 100x is 100^100 - 4950 so x will be 10^99 - 99/2.
~~GF
Gore, I know you are very capable but on this occasion you did not read the question properly.
\(S_n=\frac{n}{2}(2a+(n-1)d)\\~\\ 10^{10}=\frac{100}{2}(2a+(100-1)*2)\\~\\ 10^{10}=\frac{100}{2}(2a+99*2)\\~\\ 10^{10}=100(a+99)\\~\\ 10^{8}=a+99\\~\\ a=10^{8}-99\\~\\\)
Check
\(S_n=\frac{n}{2}(2a+(n-1)d)\\~\\ S_{100}=\frac{100}{2}(2(10^8-99)+99*2)\\~\\ S_{100}=100(10^8-99+99)\\~\\ S_{100}=100(10^8)\\~\\ S_{100}=100^{10} \)
Of course this is not a great check because I have used exactly the same formula as I did when i worked it out.
S_n=\frac{n}{2}(2a+(n-1)d)\\~\\
10^{10}=\frac{100}{2}(2a+(100-1)*2)\\~\\
10^{10}=\frac{100}{2}(2a+99*2)\\~\\
10^{10}=100(a+99)\\~\\
10^{8}=a+99\\~\\
a=10^{8}-99\\~\\