+0

# HELP!

0
46
7
+189

Compute $$\dbinom{14}{11}$$

May 2, 2020

#1
+656
+1

\begin{align*} \dbinom{14}{11} &= \dbinom{14}{3} \\ &= \dfrac{14!}{11!3!} \\ &= \dfrac{14\times 13\times 12}{3\times 2\times 1} \\ &= 14 \times 13 \times \dfrac{12}{3\times 2\times 1} \\ &= 14\times 13\times 2 \\ &= \boxed{364}. \end{align*}

By the way, I wrote this even though it may look similar to ones on different websites

May 2, 2020

#1
+656
+1

\begin{align*} \dbinom{14}{11} &= \dbinom{14}{3} \\ &= \dfrac{14!}{11!3!} \\ &= \dfrac{14\times 13\times 12}{3\times 2\times 1} \\ &= 14 \times 13 \times \dfrac{12}{3\times 2\times 1} \\ &= 14\times 13\times 2 \\ &= \boxed{364}. \end{align*}

By the way, I wrote this even though it may look similar to ones on different websites

LuckyDucky May 2, 2020
#2
+189
+1

Its correct!

SoggyPerson  May 2, 2020
#3
+656
+1

:D

LuckyDucky  May 2, 2020
#4
+111360
+1

Good job, LD    !!!!!

CPhill  May 2, 2020
#5
+656
+1

Thanks man

Together we are the jam crew violin+rock

LuckyDucky  May 2, 2020
#6
+51
-1

You got this from AoPs alcumus right? I mastered it... Anyway:

$$\binom{14}{11}$$= 14 x 13 x 12 x 11...3/ 11!. = 14 x 13 x 12/6 = 26 x 14 = 364

STOP POSTING AOPS QUESTIONS

May 3, 2020
#7
+189
+2

It was my last one now I will not ask anymore because I understand now for example

11 choose 3 = 11!/3!(11-3

= 165

SoggyPerson  May 3, 2020