+0

# help. PLZ I wish I could figure out how to do this.

+2
43
1

The altitude of an equilateral triangle is the square root of 6 units. What is the area of the triangle, in square units? Express your answer in simplest radical form.

Guest Nov 28, 2017
edited by Guest  Nov 28, 2017

#1
+5586
+2

Let  x  be the side length of the triangle. Here's a quick drawing:

From the Pythagorean theorem...

(x/2)2 + (√6)2  =  x2

x2/4 + 6  =  x2                Multiply through by  4 .

x2 + 24  =  4x2               Subtract  x2  from both sides.

24  =  3x2                       Divide both sides by  3  then take the positive square root of both sides.

x  =  √8

And...

area of triangle, in square units  =  (1/2)(x)(√6)   =   (1/2)(√8)(√6)   =   (1/2)(4√3)   =   2√3

hectictar  Nov 28, 2017
Sort:

#1
+5586
+2

Let  x  be the side length of the triangle. Here's a quick drawing:

From the Pythagorean theorem...

(x/2)2 + (√6)2  =  x2

x2/4 + 6  =  x2                Multiply through by  4 .

x2 + 24  =  4x2               Subtract  x2  from both sides.

24  =  3x2                       Divide both sides by  3  then take the positive square root of both sides.

x  =  √8

And...

area of triangle, in square units  =  (1/2)(x)(√6)   =   (1/2)(√8)(√6)   =   (1/2)(4√3)   =   2√3

hectictar  Nov 28, 2017

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details